АВТОМАТИЗИРОВАННАЯ СИСТЕМА ОБРАБОТКИ ВИДЕОДАННЫХ С ЦЕЛЬЮ ВЫЯВЛЕНИЯ НАРУШЕНИЙ ТРЕБОВАНИЙ ОХРАНЫ ТРУДА И ТЕХНИКИ БЕЗОПАСНОСТИ В ЧАСТИ ИСПОЛЬЗОВАНИЯ СПЕЦОДЕЖДЫ

Д. Е. Карпенко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель К. С. Курочка

Указано, что проблема производственного травматизма во многом связана с несоблюдением требований по ношению средств индивидуальной защиты (СИЗ). В связи с этим осуществлен поиск оптимального решения для автоматизации контроля использования СИЗ
с помощью нейронных сетей. Поставлена задача сравнить современные архитектуры детектирования объектов — YOLOv8s, YOLOv8m, Faster R-CNN+FPN и SSD300 VGG16 по их
способности обнаруживать СИЗ в условиях, приближенных к реальным (разное освещение,
ракурсы, перекрытия). При этом основными критериями оценки служили точность (тАР)
и скорость обработки (FPS). Эксперименты на специально подготовленном датасете показали, что модели YOLOv8 обеспечивают наилучший компромисс между скоростью и качеством детекции по сравнению с Faster R-CNN+FPN и SSD300 VGG16. Отмечено, что это делает их перспективным инструментом для внедрения в системы промышленной безопасности.

Ключевые слова: средства индивидуальной защиты, СИЗ, YOLO, $Faster\ R$ -CNN, SSD, детектирование объектов, компьютерное зрение, охрана труда, промышленная безопасность, mAP, FPS.

Традиционный контроль за ношением спецодежды силами наблюдателей не лишен недостатков. Постоянный мониторинг большого числа работников требует значительных человеческих ресурсов, а эффективность такого контроля снижается из-за усталости, невнимательности и субъективности оценок. Кроме того, обеспечить повсеместное и непрерывное наблюдение, особенно в больших или опасных зонах, часто не представляется возможным. В связи с этим актуальной становится разработка автоматизированных систем, способных надежно и быстро выявлять нарушения в использовании СИЗ.

Исследование концентрируется на ведущих моделях компьютерного зрения: R-CNN, YOLO и SSD, которые позволяют осуществлять точную детекцию объектов как в реальном времени, так и при постобработке. Данные алгоритмы находят широкое применение в различных областях, включая медицину, биометрические системы, транспортную логистику и другие сферы.

В качестве основы для такой системы были рассмотрены популярные архитектуры глубокого обучения для задач детекции объектов: R-CNN (в лице $Faster\ R$ -CNN), YOLO и SSD. Эти подходы широко используются в различных областях, от медицины [1] и транспорта [2, 3] до контроля качества [4] и анализа медицинских изображений [5]. В данном исследовании для сравнения были выбраны конкретные реализации: YOLOv8 в версиях small и medium, $Faster\ R$ -CNN с $Feature\ Pyramid\ Network\ (FPN)$ и SSD300 на базе VGG16.

Для оценки моделей был собран и размечен набор данных, отражающий типовые сценарии на производстве. Обучение проводилось на вычислительной связке $Ryzen\ 7\ 5700x + RTX\ 3060\ 12Gb$ с подбором оптимальных гиперпараметров для каж-

дой модели. Тестирование производительности (скорости обработки) выполнялось на видео с разрешением 1280×736 пикселей. Результаты оценки точности по метрике mAP для каждого класса объектов представлены на рис. 1, а по метрике mAR — на рис. 2. Сводные данные по скорости (FPS) приведены в таблице. Пример визуализации работы детектора показан на рис. 3.

TT		U		
Hinn	UZBOTUTETLHOCTL	молелеи в	каппах в	CERVHIV
TTHO	изводительность	моделен в	кадрал в	сскупду

Тип данных	YOLO8M	YOLO8S	Fasten R-CNN+FPN	SSD300 VGG16
FP16	136 кадр/с	200 кадр/с	40 кадр/с	136 кадр/с
FP32	88 кадр/с	166 кадр/с	14 кадр/с	88 кадр/с

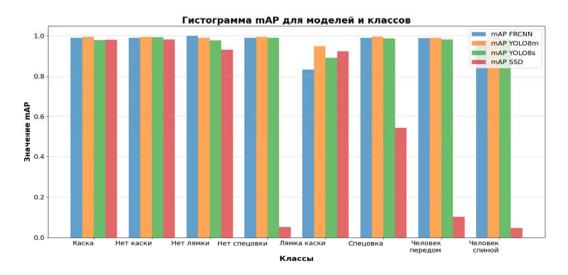


Рис. 1. Гистограмма с метриками тАР



Puc. 2. Гистограмма с метриками mAR

Рис. 3. Пример маркирования объектов

Анализ результатов указывает на то, что архитектуры YOLOv8 и $Faster\ R$ -CNN+FPN в целом продемонстрировали более высокую и стабильную точность по разным классам объектов по сравнению с $SSD300\ VGG16$. Модель SSD показала трудности с одновременным обнаружением объектов разного масштаба: попытки улучшить детекцию крупных объектов негативно сказывались на распознавании мелких, и наоборот.

Модель *YOLOv8 Small*, будучи самой легковесной (11,2 млн параметров), продемонстрировала хорошую общую производительность, но столкнулась с трудностями при детекции класса лямка каски. Вероятно, это связано как с меньшей сложностью самой модели, так и с несбалансированностью датасета (малое число примеров лямок). Об этом свидетельствует заметный разрыв между mAP (0,891) и mAR (0,703) для этого класса.

 $Faster\ R$ -CNN+FPN также показала неидеальные результаты для лямок касок. Сравнительно более низкий mAP по отношению к mAR может указывать на то, что модель находит объекты, но не всегда точно локализует их границы, что может быть связано с используемыми признаками и настройками генератора якорных областей.

Для повышения общей надежности системы мониторинга СИЗ целесообразно добавить этап верификации обнаруженных нарушений. Это может включать анализ последовательности кадров и введение дополнительных классов для неоднозначных ситуаций (например, человек частично скрыт, ношение капюшона вместо каски), чтобы минимизировать ложные срабатывания. Детектор в такой системе будет передавать кандидатов на нарушения системе верхнего уровня для окончательного решения.

Исходя из полученных данных о точности и скорости, модели YOLOv8 (Medium и Small) представляются наиболее сбалансированными решениями для задачи автоматизированного контроля СИЗ. Выбор между Medium и Small версией зависит от доступных вычислительных ресурсов и требований к производительности в реальном времени: Small предлагает более высокую скорость, тогда как Medium обеспечивает несколько лучшую точность, особенно на сложных или малопредставленных классах.

Литература

- Kurochka, K. S. An algorithm of segmentation of a human spine X-ray image with the help of Mask R-CNN neural network for the purpose of vertebrae localization / K. S. Kurochka, K. A. Panarin // 2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST). – 2021. – P. 55–58. – DOI 10.1109/ICEST52640.2021.9483467
- 2. Faster R-CNN: Towards real-time object detection with region proposal networks / S. Ren, K. He, R. Girshick, & J. Sun // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. Vol. 39, N 6. P. 1137–1149.

- 3. Traffic Sign and Vehicle Detection Based on Improved YOLOv8 for Autonomous Driving / Zhongjie Huang, Lintao Li1, Gerd Christian Krizek, Linhao Sun // 2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS). 2023. P. 226–232.
- 4. Брехт, Э. А. Применение нейронной сети YOLO для распознавания дефектов / Э. А. Брехт, В. Н. Коншина // Интеллектуальные технологии на транспорте. 2022. № 2. С. 41–47.
- Kurachka, K. S. Localization of human percentages on X-ray images with use of Darknet YOLO / K. S. Kurachka, T. V. Luchshava, K. A. Panarin // Doklady BGUIR. – 2018. – Vol. 113, N 3. – P. 32–38.

АРМ НАЧАЛЬНИКА УЧАСТКА МОНТАЖА И НАЛАДКИ СИСТЕМ ОХРАННОЙ И ПОЖАРНОЙ СИГНАЛИЗАЦИИ БООО «СИСТЕМАВТОМАТИКА» С АВТОМАТИЧЕСКОЙ ГЕНЕРАЦИЕЙ ВЫХОДНОЙ ДОКУМЕНТАЦИИ

А. Г. Александров

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель М. И. Михайлов

Представлена разработка приложения, демонстрирующего автоматизированное рабочее место главного инженера по монтажу и наладке систем охранной и пожарной сигнализации для организации БООО «Системавтоматика» с возможностью автоматической генерации документации.

Ключевые слова: *web*-приложение, автоматизация, учет, современные технологии, ремонт оборудования.

В современных условиях ручное заполнение документации при монтаже и наладке охранно-пожарных систем становится серьезной проблемой — оно отнимает много времени, повышает риск ошибок и усложняет контроль за выполнением работ. Разрозненное хранение актов, протоколов и отчетов приводит к путанице, дублированию данных и трудностям при поиске нужной информации. Централизованная система автоматической генерации и хранения документов не только ускоряет процессы, но и обеспечивает порядок в учете, исключает потерю данных и упрощает взаимодействие между сотрудниками.

Программный комплекс создается с применением современных технологий, обеспечивающих высокую производительность, масштабируемость и удобство дальнейшей поддержки.

Серверная часть автоматизированного рабочего места разработана на платформе *Node.js* с использованием фреймворка *NestJS*, что обеспечивает высокую производительность и масштабируемость системы [1, с. 22]. Архитектура приложения построена по модульному принципу, где каждый функциональный блок (работа с документами, управление пользователями, отчетность) выделен в отдельный модуль с четко определенными зависимостями. Это позволяет легко расширять функционал системы и поддерживать код в актуальном состоянии.

Для работы с данными используется *ТуреORM* – современный *ORM*-фреймворк, который позволяет описывать сущности базы данных в виде *ТуреScript*-классов с применением декораторов. *ТуреORM* поддерживает автоматическую генерацию миграций, что особенно важно при работе в команде и поэтапном развитии системы. Фреймворк предоставляет *QueryBuilder* и репозиторный паттерн работы с данными, что делает код более читаемым и поддерживаемым.