Важным компонентом разработанного Flutter приложения является библиотека BLoC (Business Logic Component) [5]. Она помогает разделять бизнес-логику от пользовательского интерфейса, что делает код более читаемым, тестируемым и поддерживаемым. BLoC основан на реактивном программировании и использует потоки (Streams) для передачи данных между слоями приложения. BLoC — это инструмент для управления состоянием в Flutter-приложениях. Он помогает создавать чистый, модульный и тестируемый код, что особенно важно для крупных проектов.

Разработанный программный комплекс [6] может быть интегрирован с существующими системами управления учебным процессом, что позволит централизованно управлять данными и анализировать успеваемость студентов. Мобильное приложение обеспечивает удобный доступ к информации о посещаемости для студентов и преподавателей, а также используется непосредственно для учета. Студенты смогут отслеживать свою посещаемость в режиме реального времени, а преподаватели и руководство факультета — оперативно вносить данные и получать отчеты.

Литература

- 1. Attendance Radar. URL: https://attendanceradar.com/ (дата обращения: 18.02.2025).
- 2. Moodle. URL: https://ru.wikipedia.org/wiki/Moodle? (дата обращения: 18.02.2025).
- 3. Создание веб-API с помощью ASP.NET Core. URL: https://learn.microsoft.com/ru-ru/aspnet/core/web-api/?view=aspnetcore-9.0 (дата обращения: 18.02.2025).
- 4. Find your way with Flutter. URL: https://docs.flutter.dev/get-started/fundamentals (дата обращения: 19.02.2025).
- 5. Flutter BLoC для начинающих. URL: https://medium.com/flutter-community/flutter-bloc-for-beginners-839e22adb9f5 (дата обращения: 19.02.2025).
- 6. Attendance-app: GitHub. URL: https://github.com/DenisVolchekkk/Attendance-app/tree/main/diplom (дата обращения: 19.02.2025).

ПРОЕКТИРОВАНИЕ ЭКСПЕРТНОЙ СИСТЕМЫ ДЛЯ ФОРМИРОВАНИЯ ПЛАНОГРАММ НА ОСНОВЕ АНАЛИЗА ТЕКСТОВЫХ ДОКУМЕНТОВ

Ю. Д. Евженко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель К. С. Курочка

Предложены концепция и архитектура экспертной системы, способной анализировать текстовые данные для извлечения критериев размещения товаров. Разработка направлена на повышение точности и скорости формирования планограмм, снижение трудозатрат и минимизацию ошибок, связанных с ручной интерпретацией текстовых инструкций.

Ключевые слова: экспертная система, планограмма, анализ текста, большие языковые модели, обработка естественного языка, автоматизация мерчандайзинга.

Планограмма — это визуальная схема выкладки товаров на полках торгового оборудования, являющаяся ключевым инструментом мерчандайзинга. От корректности и эффективности планограммы напрямую зависят показатели продаж, восприятие бренда и удовлетворенность покупателей. Традиционно процесс формирования планограмм осуществляется вручную специалистами-мерчандайзерами. Однако этот процесс становится все более сложным из-за обилия требований, поступающих из различных источников: договоров с поставщиками, корпоративных стандартов,

маркетинговых планов, акций. Эти требования часто изложены в виде неструктурированных текстовых документов, что делает их интерпретацию трудоемкой, субъективной и подверженной ошибкам. Также ручное создание и обновление планограмм требует значительных временных и ресурсных затрат.

Целью данной работы является проектирование архитектуры экспертной системы, предназначенной для автоматизации процесса формирования планограмм путем анализа требований, изложенных в текстовых документах.

Для решения поставленной задачи предлагается использовать подход, основанный на принципах экспертных систем, где знания о правилах выкладки извлекаются автоматически из текстовых источников с помощью современных методов обработки естественного языка (NLP). В качестве ядра для анализа текстовой информации выбраны большие языковые модели (LLM), обладающие способностью глубокого понимания семантики и контекста естественного языка, что позволяет эффективно извлекать сложные и неявно выраженные правила из неструктурированных текстов.

Предлагаемая архитектура экспертной системы включает четыре основных компонента, взаимодействие которых показано на рис. 1.

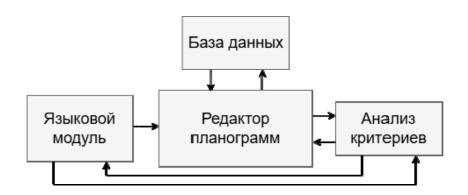


Рис. 1. Схема взаимодействия компонентов системы

Первый компонент — языковой модуль на базе LLM. Он отвечает за обработку входящих текстовых документов, используя техники промпт-инжиниринга или дообучения для идентификации и извлечения конкретных правил и ограничений по выкладке товаров, а также их атрибутов. Результатом его работы являются структурированные данные, содержащие правила выкладки товаров.

Вторым компонентом является редактор планограмм. Это графический интерфейс пользователя, который позволяет создавать, визуализировать и модифицировать планограммы с использованием алгоритма автоматического первичного размещения товаров на основе правил, которые сформулировала *LLM* в предыдущем модуле. Пользователь также может вносить ручные корректировки и сохранять результат.

Третий компонент — модуль проверки критериев выкладки. Он верифицирует созданную или отредактированную планограмму, сопоставляя фактическое расположение товаров с набором релевантных правил.

Четвертый компонент — база данных (БД), которая служит центральным хранилищем системы. Она содержит каталог товаров, информацию о торговом оборудовании, а также готовые планограммы. Логическая схема базы данных представлена на рис. 2.

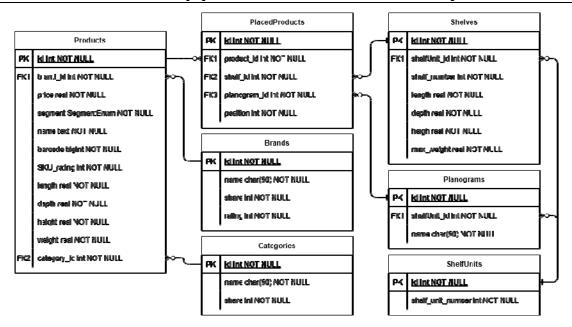


Рис. 2. Схема базы данных

Взаимодействие компонентов происходит последовательно: текстовый документ поступает в языковой модуль, извлеченные правила — в редактор планограмм. Редактор планограмм использует правила для автоматической генерации планограммы, которую после генерации пользователь может видоизменять по своему усмотрению. Готовая планограмма передается в модуль проверки, который сверяет ее с текущими правилами. Далее полученная планограмма сохраняется в БД.

Основным преимуществом предлагаемой системы является использование *LLM* для анализа текстовых документов, что позволяет гибко адаптироваться к разнообразным формулировкам требований и извлекать правила с высокой точностью из неструктурированных источников. Это отличает систему от традиционных подходов, требующих ручного ввода правил.

Внедрение такой системы сулит значительные выгоды. Ожидается, что она позволит существенно сократить время на разработку и обновление планограмм, повысить точность выполнения требований договоров и стандартов мерчандайзинга. Также прогнозируется снижение количества ошибок, связанных с человеческим фактором при интерпретации текстов, обеспечение единообразия и последовательности выкладки в торговых точках и ускорение реакции на изменение маркетинговых активностей и условий поставщиков.

Предложенная архитектура экспертной системы для формирования планограмм на основе анализа текстовых документов решает актуальную проблему автоматизации сложного и трудоемкого процесса в ритейле. Использование больших языковых моделей для извлечения правил выкладки из неструктурированных текстов является ключевым инновационным элементом проекта. Разработанная концепция закладывает основу для создания инструмента, способного существенно повысить эффективность мерчандайзинга, снизить затраты и улучшить соблюдение стандартов выкладки товаров.