Интеграция с внешними системами позволяет веб-приложению взаимодействовать с другими корпоративными учетными системами. Также предусмотрена возможность импорта и экспорта данных в форматах *Excel*, *CSV* и *PDF*, что расширяет возможности работы с отчетами и дает возможность адаптировать информацию под нужды разных подразделений.

Таким образом, разработка информационно-аналитического веб-приложения для управления автотранспортом РУП «Гомельэнерго» является важным шагом в автоматизации процессов учета и анализа эксплуатации автопарка. Применение современных технологий позволяет не только повысить прозрачность процессов, но и существенно сократить затраты на эксплуатацию транспортных средств, особенно за счет более точного контроля расхода топлива и своевременного проведения технического обслуживания.

Кроме того, система способствует улучшению качества принятия решений благодаря удобной аналитике и отчетности, что положительно влияет на общую эффективность работы предприятия. Внедрение веб-приложения помогает минимизировать риски, связанные с неисправностями автотранспорта, и оптимизировать процессы управления ресурсами. В дальнейшем, с развитием системы, можно будет интегрировать дополнительные модули для мониторинга состояния автомобилей с помощью датчиков и других современных технологий.

В целом, использование информационно-аналитического веб-приложения позволит РУП «Гомельэнерго» повысить эффективность работы автопарка, снизить эксплуатационные расходы и увеличить степень автоматизации процессов, что, в свою очередь, способствует устойчивости работы и конкурентоспособности компании на рынке энергетических услуг.

Литература

- 1. Бучек, Г. ASP.NET / Г. Бучек. СПб. : Питер, 2002. 509 с.
- 2. Лок, Э. ASP.NET Core в действии / Э. Локк ; пер. с англ. Д. А. Беликова. М. : ДМК-Пресс, 2021. 906 с.
- 3. Смит, Дж. П. Entity Framework Core в действии / Дж. П. Смит ; пер. с англ. Д. А. Беликова. М. : ДМК-Пресс, 2022. 690 с.
- 4. Тузовский, А. Ф. Проектирование и разработка web-приложений : учеб. пособие для СПО / А. Ф. Тузовский. М. : Юрайт, 2019. 218 с.
- 5. Гоф, Дж. Проектирование архитектуры АРІ / Дж. Гоф, Д. Брайант, М. Оберн. Астана : АЛИСТ, 2024. 288 с.
- 6. Павловская, Т. А. С#. Программирование на языке высокого уровня / Т. А. Павловская. СПб. [и др.] : Питер, 2014. 432 с.

ПРОГРАММНЫЙ КОМПЛЕКС С МОБИЛЬНЫМ ПРИЛОЖЕНИЕМ ДЛЯ УЧЕТА ПОСЕЩАЕМОСТИ СТУДЕНТОВ ГГТУ им. П. О. СУХОГО

Д. С. Волчек

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель О. Д. Асенчик

Разработан программный комплекс, автоматизирующий учет посещаемости студентов, который включает графический интерфейс, адаптированный для работы как на стационарных компьютерах, так и на мобильных платформах, что обеспечивает опера-

тивное и достоверное фиксирование данных. Комплекс обладает возможностью расширения и адаптации для применения в различных образовательных учреждениях.

Ключевые слова: мобильные приложения, API, ASP .NET, учет посещаемости.

Ручной учет посещаемости студентов является трудоемким и подверженным ошибкам процессом. Оперативный доступ к информации для принятия управленческих решений при таком способе учета также затруднен. Автоматизация этого процесса с помощью программного комплекса позволит упростить работу преподавателей и администрации, снизить вероятность ошибок и сэкономить время. Система учета посещаемости мотивирует студентов более ответственно относиться к посещению занятий, так как их присутствие или отсутствие будет фиксироваться объективно и оперативно. Это способствует повышению успеваемости и дисциплины.

В настоящее время учет посещаемости студентов в большинстве образовательных учреждений, включая университеты, осуществляется с использованием различных подходов и технологий. Однако многие из этих решений имеют ограничения и не полностью отвечают современным требованиям. На рынке присутствуют мобильные приложения для учета посещаемости, такие как Attendance Radar [1], Му Attendance Tracker [2] и другие, но они часто имеют ограниченную функциональность, слабую интеграцию с другими системами университета и не всегда адаптированы под специфику конкретного учебного заведения. Программный комлекс разрабатывался с учетом специфики ГГТУ им. П. О. Сухого и интегрирован с текущими системами управления учебным процессом. Это обеспечит централизованное управление данными и упростит работу преподавателей и администрации.

Представляемое приложение предоставляет удобный интерфейс для студентов и преподавателей, включая возможность отслеживания посещаемости в режиме реального времени, уведомления о пропущенных занятиях и интеграцию с расписанием. Приложение разработано с учетом потребностей студентов и преподавателей, обеспечивая простоту использования, минимальное время обучения и высокую скорость работы.

Предлагаемый программный комплекс с мобильным приложением предлагает инновационный подход, сочетающий в себе удобство, функциональность и интеграцию с существующими системами. Это делает его актуальным и востребованным решением для современного университета.

Цель проекта – создание кроссплатформенного решения для учета посещаемости.

На рис. 1 приведена схема взаимодействия клиента с сервером. Исходя из схемы видно, как пользователь взаимодействует с сервером. При вводе своего логина и пароля пользователь входит в приложение, проходя через процесс аутентификации. В зависимости от его роли он видит разные страницы и ему доступны разные действия. В отправляемой системой токене содержатся имя и роль пользователя. И при отправке запроса на выполнение какой-либо операции произойдет проверка роли в токене пользователя и в зависимости от роли пользователя ему будет выдан тот или иной ответ от сервера. В приложении присутствует несколько ролей, а именно: декан, заместитель декана, преподаватель и староста. Декан может добавлять и изменять любую информацию, в том числе он имеет доступ к любой странице и изменению ролей других пользователей. Заместитель декана выполняет те же функции, но не может изменять роли пользователей. Преподаватель может редактировать посещения на своих занятиях, а староста — только у своей группы, иные функции им недоступны.

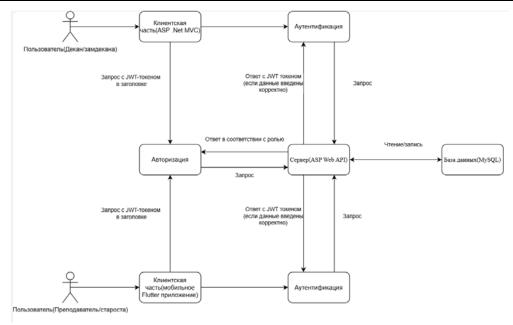


Рис. 1. Схема взаимодействия между клиентом сервером

Программная архитектура основана на многослойной архитектуре и разделен на несколько слоев: слой данных, слой сервера, слой клиента. Такая архитектура помогает разделить ответственность между различными частями приложения, что делает код более поддерживаемым и масштабируемым. Она также облегчает тестирование и внесение изменений в отдельные компоненты без влияния на другие части системы.

Для хранения и обработки данных о структурах баз данных использовалась реляционная база данных MySQL для надежного и эффективного хранения всех необходимых данных о сущностях. Для работы с базой данных используется ORM (Object-Relational Mapping) фреймворк Entity-Framework (EF) для работы с базами данных в C# и .NET. Он упрощает взаимодействие с базой данных.

API (Application Programming Interface) разработан при помощи ASP.NET Web API [3]. Он является частью экосистемы ASP.NET и позволяет разработчикам создавать RESTful (REST) веб-сервисы, которые возвращают данные в форматах, таких как JSON или XML. Create, Read, Update и Delete (CRUD) операции выполняются с помощью патерна «Репозиторий», что позволяет отделить логику работы с данными от бизнесс-логики и делает приложение более гибким. АРІ можно использовать для создания любых приложений и на любых платформах.

Графический интерфейс десктопного Web-приложения разработан на ASP.NET MVC — это фреймворк для создания веб-приложений с использованием шаблона MVC. Он предназначен для генерации HTML-страниц, которые отображаются в браузере. Используется разработанная API для выполнения CRUD операций.

Для разработки мобильного клиента был использован фреймфорворк Flutter [4]. Это фреймворк с открытым исходным кодом для создания кроссплатформенных приложений, разработанный компанией Google. Flutter использует Dart — современный язык программирования, также разработанный Google. Код Dart компилируется в нативный код, что обеспечивает высокую производительность. Мобильное приложение также будет работать с API и иметь свою систему авторизации, завязанную на API.

Важным компонентом разработанного Flutter приложения является библиотека BLoC (Business Logic Component) [5]. Она помогает разделять бизнес-логику от пользовательского интерфейса, что делает код более читаемым, тестируемым и поддерживаемым. BLoC основан на реактивном программировании и использует потоки (Streams) для передачи данных между слоями приложения. BLoC — это инструмент для управления состоянием в Flutter-приложениях. Он помогает создавать чистый, модульный и тестируемый код, что особенно важно для крупных проектов.

Разработанный программный комплекс [6] может быть интегрирован с существующими системами управления учебным процессом, что позволит централизованно управлять данными и анализировать успеваемость студентов. Мобильное приложение обеспечивает удобный доступ к информации о посещаемости для студентов и преподавателей, а также используется непосредственно для учета. Студенты смогут отслеживать свою посещаемость в режиме реального времени, а преподаватели и руководство факультета — оперативно вносить данные и получать отчеты.

Литература

- 1. Attendance Radar. URL: https://attendanceradar.com/ (дата обращения: 18.02.2025).
- 2. Moodle. URL: https://ru.wikipedia.org/wiki/Moodle? (дата обращения: 18.02.2025).
- 3. Создание веб-API с помощью ASP.NET Core. URL: https://learn.microsoft.com/ru-ru/aspnet/core/web-api/?view=aspnetcore-9.0 (дата обращения: 18.02.2025).
- 4. Find your way with Flutter. URL: https://docs.flutter.dev/get-started/fundamentals (дата обращения: 19.02.2025).
- 5. Flutter BLoC для начинающих. URL: https://medium.com/flutter-community/flutter-bloc-for-beginners-839e22adb9f5 (дата обращения: 19.02.2025).
- 6. Attendance-app: GitHub. URL: https://github.com/DenisVolchekkk/Attendance-app/tree/main/diplom (дата обращения: 19.02.2025).

ПРОЕКТИРОВАНИЕ ЭКСПЕРТНОЙ СИСТЕМЫ ДЛЯ ФОРМИРОВАНИЯ ПЛАНОГРАММ НА ОСНОВЕ АНАЛИЗА ТЕКСТОВЫХ ДОКУМЕНТОВ

Ю. Д. Евженко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель К. С. Курочка

Предложены концепция и архитектура экспертной системы, способной анализировать текстовые данные для извлечения критериев размещения товаров. Разработка направлена на повышение точности и скорости формирования планограмм, снижение трудозатрат и минимизацию ошибок, связанных с ручной интерпретацией текстовых инструкций.

Ключевые слова: экспертная система, планограмма, анализ текста, большие языковые модели, обработка естественного языка, автоматизация мерчандайзинга.

Планограмма — это визуальная схема выкладки товаров на полках торгового оборудования, являющаяся ключевым инструментом мерчандайзинга. От корректности и эффективности планограммы напрямую зависят показатели продаж, восприятие бренда и удовлетворенность покупателей. Традиционно процесс формирования планограмм осуществляется вручную специалистами-мерчандайзерами. Однако этот процесс становится все более сложным из-за обилия требований, поступающих из различных источников: договоров с поставщиками, корпоративных стандартов,