по улучшению сна младенца. При критических показателях родителю будет предложено обратиться к педиатру для получения профессиональных рекомендаций и помощи.

Таким образом, данное приложение представляет собой перспективный инструмент для оптимизации режима сна у младенцев. Комбинация ручного и автоматизированного сбора данных, а также предоставление статистического анализа и индивидуальных рекомендаций позволяют родителям более осознанно подходить к организации сна ребенка, улучшая его качество и обеспечивая благоприятные условия для развития.

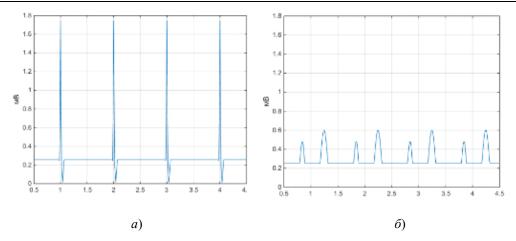
АНАЛИЗ СГЛАЖЕННОГО ЭКГ СИГНАЛА В СПЕКТРАЛЬНОЙ ОБЛАСТИ ПРИ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ

А. В. Кузнецова, А. Р. Аветисян

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет», Российская Федерация

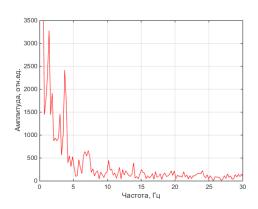
Научный руководитель С. Г. Проскурин

Описаны особенности применения Фурье и вейвлет-анализа для выявления аритмии и расчета ее количественных характеристик в норме и на примере фибрилляции предсердий. Проведено сравнение сглаженных ЭКГ сигналов (P- и Т-волны) в норме и при мерцательной аритмии человека.


Ключевые слова: мерцательная аритмия, вариабельность сердечного ритма, электрокардиография, спектральный анализ, фибрилляция предсердий.

Сердечно-сосудистые заболевания продолжают оставаться основной причиной смертности среди населения. Например, мерцательная аритмия (МА) составляет примерно 30–40 % от общего числа нарушений сердечного ритма. В кардиологической практике для выявления аритмий применяются различные приборы, предназначенные для кратковременной или долговременной регистрации электрической активности сердца [1]. Хотя эти устройства широко используются, они обладают общим недостатком: несмотря на возможность фиксирования нарушений синусового ритма, они не позволяют точно оценить количественные характеристики этих нарушений [2, 3].

В данной работе представлены результаты разделения ЭКГ-сигнала (ЭКС) во временной области на плавно меняющиеся (P- и T-волны) и быстро меняющиеся (QRS-комплекс), а также анализ гармонических составляющих в частотной области. Полученные данные могут стать основой для создания алгоритмов, позволяющих адекватно определять количественные характеристики ЭКС и нарушений синусового ритма.


Применение Фурье и вейвлет анализа для выявления аритмии. Для оценки спектра мощности электрокардиосигнала и анализа сердечного ритма применяется метод спектрального анализа, позволяющий выявлять активные частоты, свидетельствующие о наличии аритмий. Однако в спектре ЭКС с QRS-комплексом возникает около 20–25 гармоник, что затрудняет адекватную диагностику работы сердца [4].

Чтобы определить количественные характеристики аритмии во временной области, предлагается разделить сигнал ЭКГ на две части (рис. 1).

 $Puc.\ 1.$ Графики сглаженного ЭКС в норме: a — электрокардиосигнал с удаленными P- и T-волнами; σ — ЭКС без QRS комплексов

Затем проводится быстрое преобразование Фурье (БПФ) для дискретных данных ЭКС, фильтрация низкочастотных шумов в течение пяти периодов ЭКС без пиков QRS в нормальном состоянии и при фибрилляции предсердий. После этого сравнивается спектр сигнала после фильтрации (рис. 2, 3).

Puc. 2. Спектр ЭКС с фибрилляцией предсердий после фильтрации

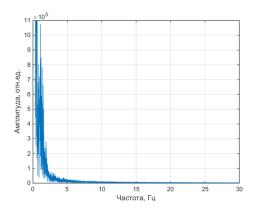


Рис. 3. Спектр ЭКС в норме после фильтрации

Вейвлет-анализ позволяет разлагать сигнал на компоненты различных частот. В отличие от БП Φ , которое дает информацию о гармонических составляющих, вейвлет-анализ способен обнаруживать изменение R–R интервалов и ЧСС, что важно для диагностики QRS-комплексов. Этот метод менее подвержен влиянию наводок, помех и шумов ЭКС, улучшая качество анализа и повышая диагностическую точность [5].

Количественное представление и анализ среднего значения и стандартного отклонения интервала R—R во временной области позволяет оценить устойчивость сердечного ритма — BPM (ударов в минуту) и STD (в процентах) соответственно. Такой подход дает возможность количественно определить влияние лечения на аритмию положительное, отрицательное или нейтральное воздействие [6].

Методы быстрого преобразования Фурье и вейвлет-анализа обладают своими преимуществами. Их совместное применение значительно увеличивает точность выявления числовых признаков аритмий и мониторинга сердечно-сосудистых заболеваний.

Анализ результатов. Для расчета стандартного отклонения R—R интервалов из сигнала ЭКГ были исключены волны P и T, произведена звуковая кардиографическая регистрация, фоноплетизмография, интервалов в миллисекундах за заданный промежуток времени, а также определены их среднее значение и среднеквадратичное отклонение.

При сравнении сигналов в нормальных условиях и при аритмии выявлена высокая корреляция: увеличение стандартного отклонения свидетельствует о большей вариабельности интервалов между ударами сердца. Полученные данные подтверждают целесообразность комплексного применения указанных методов.

Таким образом, количественный подход к диагностике аритмии среди различных групп пациентов позволяет выявить различия в характере вариабельности сердечного ритма, частоте сердечных сокращений и стандартном отклонении синусового ритма.

В перспективе планируется применять метод спектрального анализа плавно меняющихся волн ЭКС наряду с вейвлет-анализом для QRS-комплексов (δ-функции) (рис. 1).

Литература

- 1. Модель сердечно-сосудистой системы с регуляцией на основе нейронной сети / С. В. Фролов, А. А. Коробов, Д. Ш. Газизова, А. Ю. Потлов // Модели, системы, сети в экономике, технике, природе и обществе. − 2021. − № 38. − С. 79–94.
- 2. Система прогнозирования рисков сердечно-сосудистых заболеваний на основе мониторинга биомедицинских данных / А. В. Горбунов, Е. Н. Туголуков, А. В. Непрокин [и др.] // Вестник РГРТУ. 2023. № 84. 7 с.
- 3. Proskurin, S. G. Trigeminy electrocardiogram spectral characteristics study / S. G. Proskurin // Cardiometry. 2023. N 27. P. 75–79.
- 4. Черешнев, В. О. Исследование частотных характеристик электрокардиограммы при помощи дискретного преобразования Фурье / В. О. Черешнев, С. Г. Проскурин // Современные наукоемкие технологии. 2019. N 2019.
- 5. Штыркова, С. Р. Анализ ЭКГ сигнала с помощью вейвлет преобразований / С. Р. Штыркова, В. В. Дубровин // Виртуальное моделирование, прототипирования и промышленный дизайн. 2023. № 9. С. 356–361.
- 6. Chereshnev, V. O. Electrocardiogram frequency characteristics study by processing and analysis of the signal in time domain and spectral domain / V. O. Chereshnev, S. G. Proskurin // Cardiometry. -2020.-N 17. -P. 30–33.