Решив данное нелинейное уравнение относительно $H_{\text{утеч}}$, получим новое значение напора при фиксированном расходе Q_0 и увеличенных оборотах $\omega > n_0$.

Таким образом, используя данный метод, можно создать устройство, снимающее без человеческого участия напорно-расходные характеристики насосного оборудования и, сравнивая их с паспортными, сможет точно определить критичный уровень износа с оповещением об этом, что позволит избежать аварийные и внеплановые остановы на технологических объектах [1, 2].

Для реализации такого устройства необходимо выбрать тип вычислительного устройства, продумать реализацию настройки устройства и удаленного доступа.

Для снятия характеристик насосного оборудования и проведения вычислений достаточно использовать микроконтроллер с небольшой тактовой частотой (8–20 МГц) и размером Flash-памяти (8–16 кБ). Для хранения паспортных данных можно дополнительно применить микросхемы памяти типа EEPROM.

Для более быстрого и удобного внесения паспортных характеристик насосного оборудования устройство должно иметь модули ввода и индикации параметров – дисплей и клавиатура.

Для своевременного предупреждения оператора о неисправности насоса или оперативного изменения настроек работы устройству необходим модуль связи (например, модуль с поддержкой промышленного протокола RS-485). Кроме этого такая связь позволит собирать данные с датчиков давления и расхода, не подключая их напрямую к устройству.

Устройство будет иметь небольшие габаритные размеры (не больше 7 модульных мест при размещении на DIN-рейку) и малое энергопотребление (до 10 Вт), однако сможет полностью освободить человека от наблюдения за состоянием насосного оборудования, что позволит полностью автоматизировать данный процесс.

Литература

- 1. Насосы и компрессоры : учеб. пособие / С. А. Абдурашитов, А. А. Тупиченков, И. М. Вершинин, С. М. Тененгольц. М. : Недра, 1974. 296 с.
- 2. Васильченко, В. А., Гидравлическое оборудование мобильных машин : справочник. М. : Машиностроение, 1983. 301 с.

РАЗРАБОТКА ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ ПРЕДПРИЯТИЯ ОБЩЕСТВЕННОГО ПИТАНИЯ С ИНТЕГРИРОВАННЫМ МОДУЛЕМ ПРОГНОЗИРОВАНИЯ ПРОДАЖ

М. М. Белко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научные руководители: А. В. Сахарук, А. Е. Запольский

Рассмотрено применение искусственного интеллекта для прогнозированя спроса на товары в рамках информационной системы.

Ключевые слова: информационная система, общественное питание, прогнозирование спроса, автоматизация, база данных, клиент-серверное приложение, Qt, нейросети, LSTM, SQLite.

В условиях высокой конкуренции в сфере общественного питания предприятия сталкиваются с необходимостью оперативного реагирования на изменение спроса, сокращение издержек и повышение эффективности бизнес-процессов. Современные

заведения уже не могут ограничиваться традиционными методами управления. Для обеспечения устойчивости и прибыльности необходим переход к цифровым решениям, способным автоматизировать ключевые процессы и формировать обоснованные управленческие решения на основе данных.

Одним из таких решений является информационная система для предприятия общественного питания с интегрированным модулем прогнозирования продаж. Она представляет собой комплексное программное решение, включающее в себя серверную часть, клиентские приложения и интеллектуальный модуль анализа данных (рис. 1).

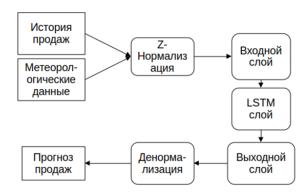


Рис. 1. Структура модуля прогноза продаж

Система обеспечивает автоматизацию процессов продаж, складского учета, аналитики и прогнозирования. Архитектура построена на модульной основе, что позволяет легко адаптировать ее под различные форматы заведений – от небольших кафе до сетевых ресторанов.

Ключевым элементом системы является модуль прогнозирования спроса, реализованный с применением методов машинного обучения. Он анализирует накопленные исторические данные о продажах, данные о времени суток, дне недели, сезонных и внешних факторах и формирует прогнозы по каждой товарной позиции. Это позволяет заранее определить оптимальные потребности в продуктах без излишков или дефицита, и, как следствие, оптимизировать закупки и складские запасы.

Процесс прогнозирования реализован с помощью модели LSTM (Long Short-Term Memory) — разновидности нейросети, способной учитывать последовательную природу временных данных и выявлять закономерности, недоступные при ручном анализе (рис. 2). Полученные прогнозы интегрируются в приложение для администрирования и доступны для анализа в виде графиков и отчетов.

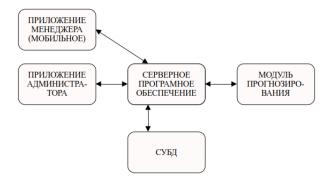


Рис. 2. Повторяющаяся модель в LSTM-сети

250 Секция IV. Радиоэлектроника, автоматизация, телекоммуникации и связь

Взаимодействие между компонентами системы осуществляется через собственный сетевой протокол, разработанный на основе TCP/IP с применением современных методов шифрования (AES-256 и RSA). Это гарантирует безопасность передачи данных и устойчивость к внешним угрозам.

Для разработки программного обеспечения использован фреймворк Qt, обеспечивающий кроссплатформенную реализацию и современный графический интерфейс.

Приложение для администрирования позволяет управлять ассортиментом, ценами, точками продаж и сотрудниками. Кассовое приложение предназначено для быстрого оформления заказов и их регистрации. Все действия фиксируются и моментально передаются на сервер.

Информационная система создает единую цифровую среду, где все данные централизованно обрабатываются, хранятся и анализируются (рис. 3). Это позволяет руководству предприятия принимать решения на основе объективной картины про-исходящего, а не на основе интуиции или предыдущего опыта.

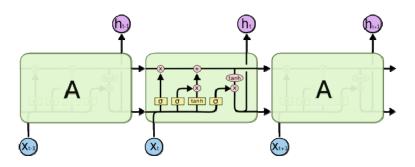


Рис. 3. Структурная схема информационной системы

Литература

- 1. Глушков, В. М. Основы построения автоматизированных систем управления / В. М. Глушков. М. : Наука, 2008. 310 с.
- 2. Goodfellow, I., Bengio, Y., Courville, A. Deep Learning / Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016. 775 p.
- 3. Hochreiter, S. Long Short-Term Memory / S. Hochreiter, J. Schmidhuber // Neural Computation. 1997. Vol. 9 (8). P. 1735–1780.
- 4. Gers, F. A. Learning to forget: Continual prediction with LSTM / F. A. Gers, J. Schmidhuber, F. Cummins // Neural Computation. 2000. Vol. 12 (10). P. 2451–2471.
- 5. PyTorch C++ API. URL: https://pytorch.org/cppdocs/ (дата обращения: 29.05.2025).

КОМПЛЕКСНАЯ СИСТЕМА КОНТРОЛЯ И УПРАВЛЕНИЯ ДЛЯ КОММЕРЧЕСКОГО АВТОМОБИЛЬНОГО ТРАНСПОРТА

Д. В. Каханчик

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель А. Е. Запольский

Рассмотрены основные особенности разработки комплексной системы контроля и управления для коммерческого автомобильного транспорта. Создание подобной системы позволит осуществлять контроль за основными параметрами и техническим состоянием