Таким образом, технология Vehicle-to-Grid (V2G) представляет собой перспективное решение для повышения стабильности энергосистемы и эффективного использования ресурсов. Внедрение V2G может способствовать выравниванию нагрузки на сеть, увеличению доли возобновляемых источников энергии и снижению затрат на модернизацию энергосистемы.

Несмотря на существующие вызовы, такие как износ аккумуляторов, необходимость инвестиций в инфраструктуру и отсутствие нормативно-правовой базы, их преодоление возможно при комплексном подходе.

V2G может отложить инвестиции в замену оборудования, предоставляя временную «буферную» мощность.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ СТРУКТУРЫ МОЩНОСТЕЙ ПЕРЕТОКА В ЭНЕРГОСИСТЕМУ НА УСТОЙЧИВОСТЬ СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ С ОДНИМ ГЕНЕРАТОРОМ

Ф. С. Запутряев

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Н. В. Грунтович

Выполнены исследования влияния изменения длины ЛЭП и $\cos{(\phi_c)}$ на запас статической мощности системы электроснабжения. Дана оценка изменения запаса статической мощности в процентах при изменении структуры мощностей перетока в энергосистему.

Ключевые слова: запас статической мощности, ЛЭП, характеристика мощности генератора, структура мощности перетока в энергосистему.

Для электрической системы, приведенной на рис. 1, с генератором, не оснащенным устройством APB, требуется:

- определить предел передаваемой мощности;
- определить коэффициенты запаса по мощности и углу;
- построить угловую характеристику мощности;

Расчеты выполнить при приближенном приведении электрических сопротивлений схемы в относительных единицах.

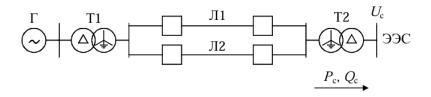


Рис. 1. Расчетная схема электрической системы

Исходные данные даны на рис. 2.

Генератор		Трансформатор 1		лэп		Трансформатор 2		Передаваемая мощность	
P _B , MBT	160	S _s ,MBA	200	X ₀ OM/KM	0,4	S _R ,MBA	240	Pc, MBT	95
cosφ	0,85	U _{HB} , KB	120	1, км	380	U _{sis} , kB	38,5	Qc, MBAp	117,1
U_{μ} , κB	10,5	U _k , %	7	U _{RTM}	115	U _E , %	10		
X _{d*} o.e.	2,1								

Рис. 2. Исходные данные 1

Принимаем: исходные данные приведены на рис. 3.

S _{6a3=} P _c MBt	80
U _{5az} KB	115
Мощности передачи в о.е	
Активная, P _{c*} =P _c /S _{6аз}	1,1875
Реактивная, $Q_{c*}=Q_{c}/S_{683}$	1,46375
Расчет сопротивлений передачи:	
Генератор, $Xd=xd^*\cdot S_{6as}/S_{HOM}$	0,8925
Трансформатор1, X ₇₁ =U _к ·S _{6а3} /100⋅S _{ном}	0,028
ЛЭП, Хл=х0·1·S _{баз} /U _{баз,ЛЭП} ²	0,230
Трансформатор2, $X_{72}=U_x \cdot S_{6ax}/100 \cdot S_{HOM}$	0,033333333
Внешнее сопротиление сети в нормальном режиме	
$X_C = X_{\tau 1} + X_{\pi} + X_{\tau 2}$	0,291
Суммарное сопротивление сети с учетом сопротивления генератора по	
продольной оси	
$X_{d\Sigma} = Xd + Xc$	1,184
Синхронная ЭДС генератора без АРВ	
$E_q = \sqrt{\left(U_c + \frac{Q_c x_{d\Sigma}}{U_c}\right)^2 + \left(\frac{P_c x_{d\Sigma}}{U_c}\right)^2} :$	3,073
Напряжение на генераторе $U_{\rm r} = \sqrt{\left(U_{\rm c} + \frac{Q_{\rm c} x_{\rm c}}{U_{\rm c}}\right)^2 + \left(\frac{P_{\rm c} x_{\rm c}}{U_{\rm c}}\right)^2}$	1,468
Предел передаваемой мощности $\mathbf{P}\mathbf{m}=\mathbf{E}_{\mathbf{q}}\cdot\mathbf{U}_{\mathbf{c}}/\mathbf{X}_{d\Sigma}$	2,60
Коэффициент запаса статической устойчивости по мощности k_P = (P_M - P_C)/ P_C	1,60
Определяем угол сдвига δ ₀ между вектором ЭДС генератора Eq и напряжением системы Uc	22,66
Коэффициент запаса статической устойчивости по углу	0,75

Рис. 3. Исходные данные 2

Будем изменять $\cos(\phi_{\rm c})$ от значения 0,63 до 0,9 с шагом 0,09 и вычислим коэффициенты запаса статической устойчивости по углу $(k_{\rm g})$ и мощности $(k_{\rm p})$

При $\cos(\varphi_c) = 0.63$: $k_\delta = 0.75$; $k_p = 1.6$. При $\cos(\varphi_c) = 0.72$: $k_\delta = 0.72$; $k_p = 1.32$. При $\cos(\varphi_c) = 0.81$: $k_\delta = 0.68$; $k_p = 1.08$. При $\cos(\varphi_c) = 0.9$: $k_\delta = 0.64$ $k_0 = 0.85$.

При изменении $\cos(\varphi_c)$ установлено, что при его увеличении от 0,63 до 0,9 коэффициент запаса статической устойчивости по углу уменьшается с 0,75 до 0,64, а коэффициент запаса статической устойчивости по мощности – с 1,6 до 0,85. Запас статической устойчивости по мощности при увеличении $\cos(\varphi_c)$ с шагом 0,09 сокращается в среднем на 22,3 %

Исследуем влияние изменения длины ЛЭП (L) на устойчивость системы электроснабжения.

Будем изменять L от значения 80 км до 600 км с шагами 40 км и 100 км и вычислим коэффициенты запаса статической устойчивости по углу $(k_{\rm g})$ и мощности $(k_{\rm g})$.

```
При L=80 км: k_{\delta}=0.76; \quad k_{p}=1.73. При L=120 км: k_{\delta}=0.76; \quad k_{p}=1.71. При L=160 км: k_{\delta}=0.76; \quad k_{p}=1.69. При L=200 км: k_{\delta}=0.76; \quad k_{p}=1.67. При L=300 км: k_{\delta}=0.75; \quad k_{p}=1.63. При L=400 км: k_{\delta}=0.75; \quad k_{p}=1.59. При L=500 км: k_{\delta}=0.74; \quad k_{p}=1.55. При L=600 км: k_{\delta}=0.74; \quad k_{p}=1.52.
```

При изменении L установлено, что при увеличении ее от 80 до 200 км с шагом 40 км коэффициент запаса статической устойчивости по углу практически не изменяется, поэтому, начиная с 200 км до 600 км был принят шаг 100 км. Коэффициент запаса статической устойчивости по углу уменьшается с 0,76 до 0,74, а коэффициент запаса статической устойчивости по мощности — с 1,73 до 1,52. Запас статической устойчивости при увеличении L сокращается в среднем на 2,07 %.

Литература

- 1. Евминов, Л. И. Электромагнитные переходные процессы в системах электроснабжения: пособие для практических занятий по одноименному курсу для студентов энергетических специальностей дневной и заочной форм обучения / Л. И. Евминов. Гомель : ГГТУ им. П. О. Сухого, 2009. 304 с.
- 2. Калентионок, Е. В. Устойчивость электроэнергетических систем / Е. В. Калентионок. Минск : Техноперспектива, 2008. 375 с
- 3. Руководящие указания по устойчивости систем. Минск: Белэнерго, 2005. 19 с.
- 4. Голованов, И. Г Переходные процессы в ЭЭС. Часть 2: Электромеханические переходные процессы: метод. указания по практическим занятиям и самостоятельной работе студентов / И. Г. Голованов. Ангарск, 2014. 90 с.

ОСОБЕННОСТИ РАСЧЕТА РЕЖИМОВ ТРЕХФАЗНОЙ НИЗКОВОЛЬТНОЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ

М. Г. Гончаров

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Д. И. Зализный

Рассмотрены особенности расчета режимов трехфазной низковольтной электрической сети при несимметричных нагрузках. Алгоритм реализован в программе Mathcad для простейшей схемы. Предложено оценивать степень несимметричности нагрузки по методу симметричных составляющих. Получены зависимости потерь напряжения и мощности в сети в зависимости от степени несимметричности нагрузки.

Ключевые слова: трехфазный, электрическая сеть, проводимость, коэффициент, несимметрия, нагрузка.

Электрические сети жилых и общественных зданий отличаются от электрических сетей в промышленности тем, что почти вся нагрузка этих сетей состоит из однофазных электроприемников, непостоянный режим работы которых приводит к несимметричному режиму работы сети.