Показатель эффективности	АБТН с паровым приводом	АБТН с приводом дымовыми газами		
Электрический КПД, %	0,90	4,3		
Энергетический КПД, %	0,55	2,6		
Эксергетический КПД, %	0.23	1.1		

Рост показателей эффективности станции

Получено, что использование сбросных тепловых потоков ТЭС для системы регенеративного подогрева питательной воды повышает эффективность использования первичного топлива. Для варианта с паровым приводом АБТН электрический КПД станции повышается на 0,90 %, использование дымовых газов на привод АБТН показывает больший эффект — увеличение электрического КПД на 4,3 %. Для оценки целесообразности данной модернизации требуется также провести оценку экономических показателей.

Литература

- 1. Our world in data. Оксфорд, 2024. URL: https://ourworldindata.org/electricity-mix (дата обращения: 29.03.2025).
- 2. Янчук, В. В. Модернизация системы регенеративного подогрева питательной воды в цикле турбоустановки ПТ-60 / В. В. Янчук, В. Н. Романюк // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2023. № 6. С. 509–529.
- 3. Янчук, В. В. Использование дымовых газов котла для АБТН системы регенеративного подогрева подпиточной воды / В. В. Янчук, В. Н. Романюк // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2025. № 3.

ЭЛЕКТРИЧЕСКИЕ И РЕЖИМНЫЕ ПАРАМЕТРЫ ТРЕХКОАКСИАЛЬНЫХ РАДИАЛЬНЫХ КОМПАКТНЫХ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ

М. С. Бучков

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Г. И. Селиверстов

Выполнены исследования электрических и режимных параметров трехкоаксиальных радиальных компактных воздушных линий (ВЛ) электропередачи. Дана сопоставительная оценка их параметров с параметрами традиционных ВЛ.

Ключевые слова: компактная ВЛ, электрические и режимные параметры ВЛ, зарядная мощность, потери мощности и напряжения.

Развитие отраслей промышленности и социальной сферы невозможно без совершенствования и опережающего развития электроэнергетики, в том числе без таких ее составляющих, как системы передачи и распределения электроэнергии.

В целях ускоренного развития систем передачи электроэнергии следует создавать воздушные линии (ВЛ) электропередачи с улучшенными удельными технико-экономическими показателями. Актуальность работы обуславлена поиском новых типов воздушных линий, отличающихся повышенной мощностью и сниженным экологическим влиянием.

Цель работы – исследование электрических и режимных параметров вариантов трехкоаксиальных радиальных компактных ВЛ (далее – компактные ВЛ) [1].

В исследованиях ставилась задача рассчитать и оценить электрические параметры и потери активной мощности и напряжения в компактных ВЛ с тремя проводами в расщепленной фазе при изменении длины электропередачи L от 1 до 80 км.

Для исследования зависимости потерь активной мощности и потерь напряжения от передаваемой мощности и длины ее передачи рассматривались компактные ВЛ [1, 2] с сечением проводов — AC-95/16, AC-120/19, AC-150/24, AC-185/29 и AC-240/32, а также для сопоставительной оценки — традиционные одноцепные и двухцепные линии такой же длины и таких же сечений проводов. Удельные параметры рассматриваемых вариантов линий (r_0 , x_0 — активное и индуктивное сопротивления; b_0 — емкостная проводимость) принимались на основании данных [1–3]. Электрические параметры вариантов компактных ВЛ приведены в табл. 1.

Таблица 1
Удельные параметры вариантов трехкоаксиальных радиальных компактных ВЛ напряжением 110 кВ

Удельные	Параме	Параметры компактных ВЛ для различных сечений проводов						
параметры	AC-95/16	AC-120/19	AC-150/24	AC-185/29	AC-240/32			
<i>r</i> ₀ , Ом/км	0,102	0,083	0,066	0,054	0,04			
<i>х</i> _{0,} Ом/км	0,106	0,106	0,105	0,104	0,103			
$b_0 \cdot 10^{-6}$, См/км	11,0	11,13	11,13	11,43	11,66			

Далее были определены погонные электрические параметры линий — активное сопротивление $R_{\rm n}$, индуктивное сопротивление $X_{\rm n}$, емкостная проводимость $B_{\rm n}$, зарядная мощность $Q_{\rm c}$. Результаты расчета параметров для линий различных конструкций с сечением провода AC-95/16 даны в табл. 2.

Таблица 2
Электрические параметры компактной ВЛ, традиционной одноцепной и двухцепной линий с проводами марки АС 95/16

	Конструктивные и электрические параметры линий электропередачи											
L,	<i>R</i> _л , Ом	<i>X</i> л, Ом	В _л , 10 ⁻⁶ , см	<i>Q</i> _с , Мвар	<i>R</i> _л , Ом	<i>X</i> _л , Ом	В _л , 10 ⁻⁶ , см	<i>Q</i> _с , Мвар	<i>R</i> л, Ом	<i>X</i> л, Ом	B _л , 10 ⁻⁶ , см	<i>Q</i> _с , Мвар
Компактная ВЛ				Траді	иционн	ая одноце	гпная	Траді	иционн	ая двухц	епная	
1	0,10	0,11	11,0	0,13	0,31	0,43	2,61	0,03	0,15	0,22	5,22	0,06
10	1,02	1,06	109,9	1,3	3,06	4,34	26,1	0,32	1,53	2,17	52,20	0,63
20	2,04	2,12	219,8	2,6	6,12	8,68	52,2	0,63	3,06	4,34	104,4	1,26
30	3,06	3,18	329,7	3,9	9,18	13,02	78,3	0,95	4,59	6,51	156,6	1,89
40	4,08	4,24	439,6	5,2	12,24	17,36	104,4	1,26	6,12	8,68	208,8	2,52

Окончание табл. 2

	Конструктивные и электрические параметры линий электропередачи											
L,	<i>R</i> _л , Ом	<i>X</i> л, Ом	$B_{_{\rm Л}}$, 10^{-6} , см	Q с, Мвар	<i>R</i> _л , Ом	<i>X</i> л, Ом	В _л , 10 ⁻⁶ , см	<i>Q</i> с, Мвар	<i>R</i> _л , Ом	<i>X</i> _л , Ом	B _л , 10 ⁻⁶ , см	Q с, Мвар
КМ	Км Компактная ВЛ					Традиционная одноцепная			Традиционная двухцепная			
50	5,10	5,30	549,5	6,5	15,30	21,70	130,5	1,58	7,65	10,8	261,0	3,16
60	6,12	6,36	659,4	7,8	18,36	26,04	156,6	1,89	9,18	13,0	313,2	3,79
70	7,14	7,42	769,3	9,1	21,42	30,38	182,7	2,21	10,71	15,2	365,4	4,42
80	8,16	8,48	879,2	10,4	24,48	34,72	208,8	2,52	12,24	17,4	417,6	5,05

Из табл. 2 видно, что активные сопротивления компактной одноцепной ЛЭП в три раза меньше, чем у традиционной линии, индуктивное сопротивление компактной линии в четыре раза меньше по сравнению с традиционной одноцепной линией и в два раза меньше, чем у двухцепной линии, зарядная мощность компактной линии в 4,5 и 2 раза больше в отличие от традиционной одноцепной и двухцепной линий соответственно.

Принципиальная схема ВЛ электропередачи для исследования ее режимных параметров (активной P, реактивной Q и полной S мощностей, напряжения U) включала источник питания, нагрузку и воздушную линию, их связывающую.

Приведены исходные данные: напряжение источника питания -115 кB; за максимальную передаваемую мощность по линии электропередачи принята предельно передаваемая мощность для различных сечений проводов с коэффициентом мощности, равным 0.93 (табл. 3).

Таблица 3
Максимальная передаваемая мощность для различных сечений проводов линий

Марка и сечение	Режимные параметры линии электропередачи						
проводов	<i>P</i> , кВт	<i>Q</i> , квар	S, ĸBA				
AC-95/16	60,43	23,89	65				
AC-120/19	69,75	27,57	75				
AC-150/24	79,05	31,24	85				
AC-185/29	93,0	36,76	100				
AC-240/32	111,6	44,11	120				

В качестве примера расчеты потерь активной мощности и напряжения ΔU для различных типов линий с сечением проводов AC-95/16 представлены в табл. 4. Результаты анализа расчетов режимов компактной ВЛ и традиционных линий показывают, что потери активной мощности в компактной линии в 3,13 раза ниже, чем в традиционной одноцепной, и в 1,53 ниже, чем в традиционной двухцепной линии при длине передачи электроэнергии $80~\rm km$.

Таблица 4

Результаты расчета потерь мощности и напряжения для различных типов ВЛ сечением AC-95/16

Длина линии	Режимные параметры линии электропередачи									
	Δ <i>P</i> , MBτ	ΔU , κΒ	ΔP , MBT	ΔU , κΒ	ΔP , MBT	ΔU , κB				
<i>L</i> , км	Компактнах	я одноцепная	Традиционн	ая одноцепная	Традиционная двухцепная					
1	0,033	0,076	0,099	0,252	0,048	0,124				
10	0,323	0,744	0,975	2,49	0,487	1,24				
20	0,642	1,46	1,947	4,97	0,970	2,46				
30	0,956	2,16	2,915	7,42	1,450	3,65				
40	1,266	2,833	3,881	9,85	1,927	4,83				
50	1,573	3,481	4,842	12,25	2,400	5,97				
60	1,875	4,106	5,801	14,63	2,871	7,1				
70	2,173	4,706	6,756	16,98	3,338	8,2				
80	2,469	5,283	7,708	19,32	3,802	9,27				

Более полно преимущества компактных ВЛ электропередач характеризует степень использования ширины трассы и коридора линий [4] при передаче через них максимального потока электрической энергии в натуральном режиме – удельная величина натуральной мощности, рассчитанная на единицу ширины трассы $P_{\rm нат}/{\rm M}$ и площади поперечного сечения $P_{\rm нат}/{\rm M}^2$.

Величина натуральной мощности на единицу ширины трассы, МВт/м и площади поперечного сечения, МВт/м 2 для компактной ВЛ напряжением 110 кВ составляет 8,2 и 0,47, для традиционной одноцепной – 2,3 и 0,17, для традиционной двухцепной – 4,4 и 0,24 соответственно; для компактной ВЛ напряжением 220 кВ – 17,9 и 0,72, для традиционной одноцепной – 6 и 0,30, для традиционной двухцепной – 11,47 и 0,53 соответственно.

Литература

- 1. Селиверстов, Г. И. Разработка новых воздушных компактных электропередач : автореф. дис. ... канд. техн. наук / Селиверстов Георгий Иванович; Мин. политехн. ин-т. Минск, 1986. 19 с.
- 2. Селиверстов, Г. И. Конструкции и параметры компактных одноцепных линий электропередачи с концентрическим расположением проводов фаз / Г. И. Селиверстов, А. В. Комар, В. Н. Петренко // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2012. № 6. С. 41–45.
- 3. Справочник по проектированию электрических сетей / И. Г. Карапетян, Д. Л. Файбисович, И. М. Шапиро ; под ред. Д. Л. Файбисовича. 4-е изд., перераб. и доп. М. : ЭНАС, 2012 376 с
- 4. Правила устройства электроустановок / Минэнерго СССР. 6-е изд., перераб. и доп. М. : Энергоатомиздат, 1985. 648 с.