ских ресурсов, а также при сжигании топлив с низкой теплотворной способностью. Для повышения термодинамической эффективности турбоустановок на органическом цикле Ренкина целесообразно применение промежуточного перегрева. Максимальная эффективность достигается при использовании оптимальных с термодинамической точки зрения параметров рабочего тела перед частями высокого и низкого давления турбины.

Литература

- 1. Овсянник, А. В. Тригенерационные турбоустановки на основе низкокипящих рабочих тел / А. В. Овсянник, В. П. Ключинский // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2022. Т. 65, № 3. С. 263–275.
- 2. Овсянник, А. В. Выбор, расчет и термодинамический анализ турбоустановок на органическом цикле Ренкина / А. В. Овсянник, В. П. Ключинский // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2022. № 1 (65). С. 76–88.
- 3. Ключинский, В. П. Термодинамический и технико-экономический анализ тригенерационных установок на органическом цикле Ренкина / В. П. Ключинский, А. В. Овсянник // Вестник Гомельского государственного технического университета имени П. О. Сухого. 2022. № 1 (88). С. 80–89.
- 4. Овсянник, А. В. Тригенерационные турбоустановки на основе низкокипящих рабочих тел / А. В. Овсянник, В. П. Ключинский // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2022. № 3 (65). С. 263–275.

ТЕПЛООБМЕН ПРИ КОНДЕНСАЦИИ ФРЕОНА R404a НА ОХЛАЖДАЕМЫХ ПОВЕРХНОСТЯХ

П. С. Колмачева

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель А. В. Овсянник

Проведены теоретические и экспериментальные исследования теплообмена при конденсации пара и гравитационном ламинарном течении пленки конденсата на вертикальной поверхности. Проверка полученных экспериментальных результатов, расчитанных по найденным зависимостям, осуществлена расчетным путем по формулам Нуссельта с помощью сравнения представленных результатов с экспериментальными исследованиями процесса конденсации озонобезопасного фреона R404a на наклонных поверхностях с вертикальными и относительно вертикальными ребрами.

Ключевые слова: конденсация, хладагент, теплообмен, фреон, эксперимент, коэффициент теплоотдачи.

Конденсация пара рабочих тел на практике встречается практически во всех теплоэнергетических установках, работающих как по прямому, так и по обратному циклам, и происходит в конденсаторах паросиловых установок, холодильных и в многочисленных теплообменных аппаратах (парожидкостные подогреватели). В подавляющем большинстве случаев конденсация в таких устройствах протекает на охлаждаемых поверхностях теплообмена, и выделенная при фазовом переходе теплота связана теплообменом через охлаждаемую поверхность с нагреваемой средой.

Эксперимент. Проводились экспериментальные исследования процесса конденсации паров смесевого чистого озонобезопасного хладагента R404a на продольно-оребренной трубе с ребром трапециевидного профиля высотой 25 мм (рис. 1).

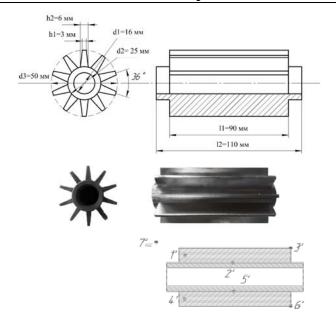
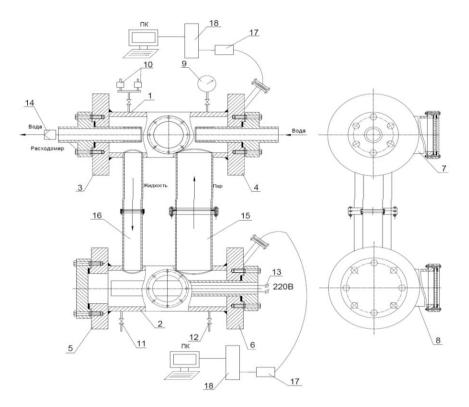



Рис. 1. Экспериментальный образец с расположением термопар

Для исследования теплообмена при кипении и конденсации жидкостей, озонобезопасных хладагентов и их маслофреоновых смесей на теплоотдающих поверхностях была разработана комплексная экспериментальная установка, показанная на рис. 2.

 $Puc.\ 2.\$ Экспериментальный стенд [1]: I,2 — рабочие камеры; 6 — фланцы; 7,8 — смотровые иллюминаторы; 9 — манометр; 10 — предохранительный клапан; 11,12 — вентили; 13 — нагреватель; 14 — расходомер; 15 — паровой канал; 16 — жидкостной канал; 17 — аналаго-цифровой преобразователь; 18 — компьютер

Рассматривалась пленочная конденсация медленно движущегося сухого насыщенного пара на горизонтальной оребренной трубе, имеющей уклон относительно горизонтальной оси 3÷5°. Такой уклон обеспечивает хорошее стекание образующейся пленки конденсата и освобождение поверхности теплообмена, тем самым уменьшая термическое сопротивление пленки конденсата. Температура ребра измерялась в трех точках: в основании, в середине ребра и на его вершине.

В эксперименте определялся коэффициент теплоотдачи по зависимости:

$$\alpha = \frac{q}{t_{\rm H} - t_{\rm c}},\tag{1}$$

где q – плотность теплового потока; $t_{\rm H}$ – температура насыщения фреона; $t_{\rm C}$ – температура стенки поверхности теплообмена.

Толщина гравитационно стекающей пленки при ламинарном режиме течения в эксперименте определялась как $\delta_{\rm nn}^9 = \frac{\lambda}{\alpha_o}$, и сравнивалась с расчетной толщиной пленки, вычисленной по формуле Нуссельта:

$$\delta_{\text{пл}} = \sqrt[4]{\frac{4 \cdot \lambda_{\text{m}} \cdot \mu_{\text{m}}(t_{\text{H}} - t_{\text{c}}) x}{2 \cdot \rho_{\text{m}}^2 \cdot q}}.$$
 (2)

Результаты экспериментальных и расчетных данных представлены в таблице.

R404a По Нуссельту Эксперимент α_0 , BT/M² · K α , BT/M² · K O, BT δ, м $1,858 \cdot 10^{-5}$ $7,865 \cdot 10^{-5}$ 3850,627 909,398 30 $3,903 \cdot 10^{-5}$ $2.207 \cdot 10^{-5}$ 1818,796 120 3216,372 $2,202 \cdot 10^{-5}$ $1,627 \cdot 10^{-5}$ 285 3192,067 4319,642 $3,277 \cdot 10^{-5}$ $2.709 \cdot 10^{-5}$ 1965,504 2377,512 800

Результаты экспериментальных и расчетных данных

На рис. 3 приведены зависимости коэффициента теплоотдачи от плотности теплового потока; толщины пленки от плотности теплового потока; толщины пленки от температурного напора; коэффициента теплоотдачи от температурного напора. Представленные зависимости показывают, что экспериментальные данные по коэффициентам теплоотдачи и толщине пленки конденсата хорошо согласуются с расчетными, вычисленными по формуле Нуссельта (рис. 3) в диапазоне плотностей тепловых потоков $q = 5000-28000~\rm BT/m^2$.

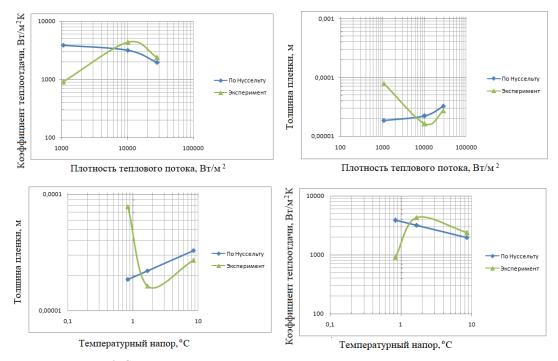


Рис. 3. Сравнение экспериментальных данных и данных по Нуссельту

В результате проведенных экспериментальных исследований процесса конденсации пара установлены гидродинамические характеристики конденсата, плотность теплового потока и интенсивность процесса теплоотдачи гравитационно стекающей пленки. Экспериментально полученные данные хорошо согласуются с расчетными данными, вычисленными по формуле Нуссельта в диапазоне плотностей тепловых потоков 5000-28000 Вт/м²; максимальная величина неопределенности по толщине пленки конденсата составила \pm 30 %, а по коэффициентам теплоотдачи $-\pm$ 17 %. Представленные результаты исследований позволят определять наиболее оптимальные режимы работы конденсаторов и конденсационных аппаратов.

Литература

- 1. Овсянник, А. В. Гидродинамика и теплообмен при течении пленки конденсата по вертикальной поверхности / А. В. Овсянник // Вестник Гомельского государственного технического университета имени П. О. Сухого. 2024. № 4 (99). С. 50–57.
- 2. Овсянник, А. В. Теплообмен при конденсации чистого озонобезопасного хладагента R404A на продольно-оребренных горизонтальных трубах / А. В. Овсянник, В. П. Ключинский // Вестник Гомельского государственного технического университета имени П. О. Сухого. 2024. № 4 (99). С. 58–69.

УНИВЕРСАЛЬНЫЙ МЕТОД БЕСПРОВОДНОЙ ЗАРЯДКИ ДЛЯ ЭЛЕКТРОТРАНСПОРТА

И. А. Чупахин

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет», Российская Федерация

Научный руководитель Н. М. Гребенникова

Отмечено, что основная идея беспроводного устройства зарядки электротранспорта заключается в размещении в нижней части транспортного средства приемника, который