Литература

- 1. Plasma electrolysis for surface engineering / A. L. Yerokhin, X. Nie, A. Leyland [et al.] // Surface and Coating Technologies. 1999. Vol. 122. P. 73–93.
- 2. Иванов, А. И. Влияние температуры электролита на толщину и твердость модифицированного слоя при электролитно-плазменном упрочнении титановых сплавов / А. И. Иванов, А. Ю. Королев // Перспективные направления развития технологии машиностроения и металлообработки. Технология Оборудование Инструмент Качество : тез. докл. 38-й Междунар. науч.-техн. конф. в рамках междунар. специализир. выставки «Металлообработка—2024», Минск, 11 апр. 2024 г. / редкол.: В. К. Шелег (отв. ред.) [и др.]. Минск, 2024. С. 37—38.

ВЛИЯНИЕ МОДИФИКАЦИИ КАТИОНАМИ МОНОЭТАНОЛАММОНИЯ И ЭТИЛЕНДИАММОНИЯ НА СТРУКТУРУ И СВЕТОПОГЛОЩЕНИЕ МЕТАЛЛОРГАНИЧЕСКИХ ПЕРОВСКИТНЫХ ПЛЕНОК

В. С. Будник, А. К. Тучковский

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники», г. Минск

Научный руководитель И. А. Врублевский

Продемонстрированы результаты исследований металлорганического галогенплюм-батного йодного перовскита до и после включения в его состав аминосодержащих соединений (алкиламмониевых йодидов) с различным строением углеродного заместителя. Отмечено, что модификация добавками солей раствора перовскита приводит к поверхностным и оптическим изменениям при исследовании перовскитных образцов. В зависимости от конкретного соединения, которым был допирован исходный перовскит, выявляются изменения в структуре поверхности пленок, выраженные в наличии перовскитных микрокристаллов либо зерен разного размера, а также в характере промежутков между ними. Показано, что оптические изменения определяются изменением значений светопоглощения в зависимости от структуры аминного соединения, включенного в первоначальный перовскитный раствор.

Ключевые слова: перовскит; допирование; алкиламмониевые йодиды; светопоглощение; видимый спектр.

Внимание ученых уже давно привлечено к разработке эффективных средств преобразования солнечной энергии в электроэнергию. Повышенный интерес к фотоэлектрическому методу обуславлен реальной возможностью создания относительно стабильных, недорогих и простых в изготовлении солнечных элементов с относительно высоким коэффициентом преобразования энергии. По этим причинам в фотовольтанке востребованы гибридные металлорганические перовскитные элементы [1].

Кристаллическая структура гибридных галогенплюмбатных металлорганических перовскитов вида $CH_3NH_3PbI_3$ рассматривается как неорганический блок соединенных по вершинам октаэдрических соединений PbI_6 , в кубооктаэдрических пустотах которого расположены метиламмониевые органические катионы $CH_3NH_3^+$, связанные с анионной подрешеткой за счет электростатического взаимодействия (рис. 1, a) [2].

Управляемая кристаллизация имеет практическое значение для получения высококачественных тонких пленок перовскита с уменьшенным количеством структурных дефектов. Такие доноры электронных пар, как азот, кислород и сера, в качестве посторонних добавок связывают катионы металлов в перовскитах и влияют на латеральный рост кристаллитов. Образцы, модифицированные N- и О-донорами,

показывают более компактную морфологию вместе с повышенной кристалличностью и размером зерен. Остаточные молекулы пассивируют мелкие дефекты в границах зерен и приводят к подавлению рекомбинации носителей заряда. В некоторых исследованиях использовались амины с длинными углеводородными хвостами для морфологической регуляции тонких пленок перовскита, но данные соединения показали неудовлетворительные результаты [3].

Цель работы — изучение влияния модифицирования перовскитного металлорганического материала аминными соединениями, имеющими различные радикальные заместители, на морфологию и оптические свойства пленок.

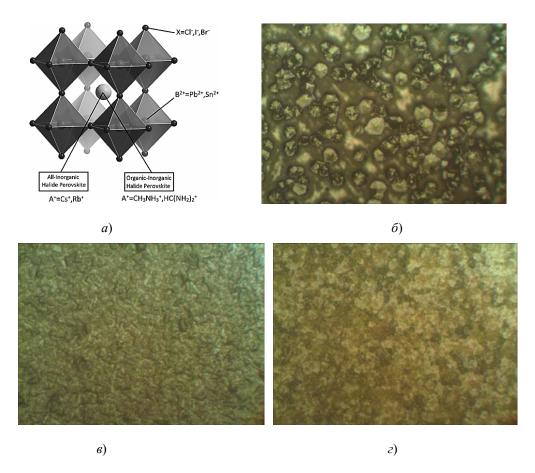


Рис. 1. Кристаллическая структура перовскита (a); морфология пленок исходного перовскита (δ), модифицированного при помощи моноэтаноламмониевого (a) и этилендиаммониевого (a) соединений

В выполненном эксперименте использовались добавки на основе моноэтаноламина и этилендиамина, концентрации которых равны 40 г/л. Пленки толщиной 0,8 мкм были получены центрифугированием (500 об/мин) с последующим отжигом при $T=100\,^{\circ}\mathrm{C}$ в течение 5 мин. Жидкофазный прекурсор перовскита $\mathrm{CH_3NH_3PbI_3}$ получали смешиванием иодида метиламмония $\mathrm{CH_3NH_3I}$ с иодидом двухвалентного свинца $\mathrm{PbI_2}$ в диметилформамиде (молярное соотношение компонентов 1 : 1), необходимые амины в виде иодидаммониевых солей добавляли при перемешивании небольшими порциями. Концентрация йодного перовскита в диметилформамиде составляла 120 г/л. Структура покрытий исследована на оптическом микроскопе

МКИ-2М при увеличении \times 500, светопоглощение (A, a. u.) — на спектрофотометре МС-122 в области длин волн (λ , нм) 380–1000 нм.

В исходном перовските пленка имеет черный цвет. Обнаруживаются отдельные крупные кристаллиты неправильной шестиугольной формы с вогнутым центром, размеры которых варьируются от 8,14 до 23,56 мкм (средний размер -15,70 мкм) (рис. $1,\delta$). При модификации перовскита при помощи моноэтаноламмониевой соли покрытие приобретает темно-красный цвет и кристаллическую структуру с большим количеством пустот. Образуются многочисленные вытянутые включения длиной 5,50-14,00 мкм со средней длиной 12,0 мкм (рис. $1,\epsilon$). При добавлении этилендиаммониевой соли пленки становятся оранжевыми и сплошными. Образуются крупные зерна диаметром 0,84-2,40 мкм, различимы отдельные округлые скопления зерен 6,30-6,50 мкм (рис. $1,\epsilon$).

При исследовании показателей светопоглощения исходного перовскита в начале исследуемого диапазона длин волн наблюдается падение показателей от $A=0.93~{\rm a.~u.}$ $(\lambda = 380 \text{ нм})$ до перегиба в значении A = 0.91 a. u. при $\lambda = 472 \text{ нм}$ (фиолетовая и синяя области видимого спектра), которое сменяется резким повышением в остальной области видимого спектра до значения A = 0.95 a. u. при $\lambda = 758$ нм (второй перегиб). В инфракрасной области показатель поглощения после второго перегиба понижается до A = 0.90 а. u. (рис. 2, кривая I). При содержании в перовските моноэтаноламмония иодида поглощение значительно падает из-за увеличения количества пустот в пленке (рис. 2, кривая 2). Показатель поглощения падает от A = 0.70 a. u. при $\lambda = 380$ нм до перегиба при A = 0.61 и $\lambda = 506$ нм (голубая область видимого спектра), затем прохолит через второй перегиб при A=0.54 и $\lambda=600$ нм (оранжевый диапазон) и остается практически неизменным на дальнейшей области видимого спектра. Максимальные значения A от 3,40 до 3,84 a. u. для перовскита, модифицированного катионом этилендиаммония, наблюдаются при диапазоне λ 380–434 нм, что соответствует фиолетовой области спектра. Затем происходит резкое падение до A = 1.90 a. u. при $\lambda = 564$ нм (зеленая область) с дальнейшим плавным понижением (A = 1.57 a. u., $\lambda = 1000$ нм) (рис. 2, кривая 3). Вышеуказанные спектральные изменения объясняются устранением пустот в модифицированной пленке и внедрением этилендиаммониевого катиона в кристаллическую решетку перовскита за счет реакции замещения.

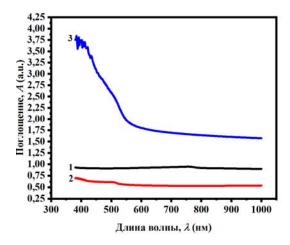


Рис. 2. Спектры поглощения исходного перовскита (1), модифицированного при помощи моноэтаноламмониевого (2) и этилендиаммониевого (3) соединений

Таким образом, модификация металлорганического перовскита при помощи катиона этилендиаммония приводит к повышению качества покрытий.

Литература

- 1. McNelis, B. The Photovoltaic Business: Manufactures and Markets. / B. McNelis // Series on Photoconversion of Solar Energy. 2001. N 1. P. 713.
- 2. El-Mellouhi, F. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites / F. El-Mellouhi [et al.] // Chem. Sus. Chem. 2016. Vol. 9, N 18. P. 2648–2655.
- 3. Амины с длинными «хвостами» повысили стабильность перовскитных солнечных элементов. URL: https://elementy.ru/novosti_nauki/433621/Aminy_s_dlinnymi_khvostami_povysili_stabilnost_perovskitnykh solnechnykh elementov (дата обращения: 08.02.2025).

ИССЛЕДОВАНИЕ ЗОН МИКРОСТРУКТУРЫ БУНТОВОГО ПРОКАТА ИЗ ПОДШИПНИКОВОЙ СТАЛИ

С. А. Савченко

Открытое акционерное общество «Белорусский металлургический завод» – управляющая компания холдинга «Белорусская металлургическая компания», г. Жлобин

Д. С. Чубарев

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель И. В. Астапенко

Представлены результаты исследования влияния диаметра бунтового проката из подшипниковой стали ШХ15 на формирование микроструктуры при двухстадийном охлаждении в линии Стелмор. Определена исходная микроструктура для профилей. Ø 5,5–18,5 мм и представлен результат ее трансформации после проведения сфероидизирующего отжига.

Ключевые слова: подшипниковая сталь, сфероидизирующий отжиг, исходная структура, пластинчатый перлит, маятниковый (циклический) отжиг, цементитные пластины и глобули.

Цель работы — провести анализ изменения микроструктуры раската из непрерывнолитой заготовки шарикоподшипниковой стали ШХ-15 для определения влияния степени обжатия на структурные изменения.

Поставленная цель достигается решением следующих задач:

- изучение и анализ исходной микроструктуры катанки;
- изучение и анализ исходной микроструктуры катанки после сфероидизирующего отжига;
 - анализ результатов и формулирование выводов.

Методика исследования включает:

- 1) отбор проб и анализ первичной микроструктуры катанки Ø 5,5-18,5 мм после поточного охлаждения на линии Стелмор;
- 2) отбор проб и анализ микроструктуры катанки Ø 5,5–18,5 мм после сфероидизирующего отжига;
 - 3) сравнительный анализ микроструктуры.

Объектом исследования в работе является технологический процесс бунтовой прокатки шарикоподшипниковых (ШХ) сталей.