Проведенный анализ влияния на стойкость инструмента режимов приработки и режимов фрезерования приработанным инструментом в присутствии различных технологических сред показал, что использование растительных масел (касторового и рапсового) значительно повышает стойкость зубьев фрез в сравнении с сухой обработки и с использованием таких СОТС, как MP-99 и И-20А.

Показано, что для чистовой обработки наиболее эффективно применить в качестве СОТС с использованием технологии минимальной смазки касторовое масло. При фрезеровании с глубинами резания более 0,5–0,8 мм целесообразно применять рапсовое масло.

Установлено, что наибольшее влияние на стойкость инструмента в принятом диапазоне изменения режимов резания оказывают подача на зуб и глубина резания для растительных масел, используемых в качестве СОТС, а при сухой обработке и при использовании СОТС MP-99 и И-20А – подача на зуб.

Литература

- 1. Ящерицын, П. И. Теория резания : учебник / П. И. Ящерицын, Е. Э. Фельдштейн, М. А. Корниевич. 2-е изд., испр. и доп. Минск : Новое знание, 2006. 512 с.
- 2. Васин, С. А. Резание материалов: Термомеханический подход к системе взаимосвязей при резании / С. А. Васин, А. С. Верещака, В. С. Кушнер. М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. 448 с.
- 3. Розенберг, Ю. А. Резание материалов : учеб. для техн. вузов / Ю. А. Розенберг. Курган : ОАО «Полиграфический комбинат», 2007. 294 с.
- 4. Якубов, Ф. Я. Структурно-энергетические аспекты упрочнения и повышения стойкости режущего инструмента / Ф. Я. Якубов, В. А. Ким. Симферополь, 2005. 300 с.
- 5. Якубов, Ч. Ф. Упрочняющее действие СОТС при обработке металлов резанием / Ч. Ф. Якубов. Симферополь: ОАО «Симферопольская городская типография», 2008. 156 с.
- 6. Бесарабец, Ю. И. О возможности использования в качестве оценки трибологических свойств СОТС коэффициента трения пары инструментальный-обрабатываемый материалы / Ю. И. Бесарабец, Э. Р. Ваниев, П. В. Скринник // Резание и инструмент в технологических системах: Междунар. науч.-техн. сб. / Нац. техн. ун-т «Харьк. политехн. ин-т». Харьков, 2012. Вып. 82. С. 10–17.

СПОСОБ ПОЛУЧЕНИЯ ПОЛОСОВОГО АНТИФРИКЦИОННОГО МЕТАЛЛОФТОРОПЛАСТОВОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

А. Д. Тамков

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель А. Н. Швецов

Разработан способ нанесения металлофторопластовых антифрикционных покрытий на стальную полосу-подложку способом электроимпульсного припекания.

Ключевые слова: политетрафторэтилен, предварительное формование, электроимпульсное спекание, подшипники скольжения.

В мировой практике создания антифрикционных материалов для самосмазывающихся подшипников скольжения в условиях эксплуатации до 300 °С в различных средах наиболее эффективными являются композиционные материалы, имеющие в качестве основного смазывающего наполнителя политетрафторэтилен (ПТФЭ) с техническим названием в СНГ – фторопласт (в США – тефлон, в Англии – флуон, во Франции – гафлон, в Японии – полифлон, в Италии – агофлон, в ФРГ – гостафлон).

Из этих материалов изготавливаются подшипники скольжения различных конструкций. Областью применения таких подшипников является их использование в самых различных узлах трения, где невозможна подача смазывающих веществ.

Среди способов получения подобных материалов наиболее перспективный метод – введение порошкового наполнителя на основе ПТФЭ непосредственно в порошковую шихту металлического материала матрицы определенного состава и обработка всей шихты в температурно-деформационных режимах, не приводящих к разложению ПТФЭ и обеспечивающих создание достаточно прочной металлической матрицы, надежно удерживающей наполнитель с ПТФЭ, равномерно распределенный по всему объему материала. Такой композиционный порошковый материал может наноситься на металлическую несущую основу.

Температура разложения ПТФЭ составляет 973 К при 196 МПа и возрастает до 1027 К при 294 МПа [1].

Используя явление повышения температуры разложения ПТФЭ с ростом давления, разработан способ получения металлофторопластовых антифрикционных покрытий.

Данный способ проводится в два этапа: 1) предварительное формование; 2) электроимпульсное припекание.

На рис. 1 представлена схема предварительного формования. Процесс производится при давлении $400{-}500~\mathrm{M}\Pi a$.

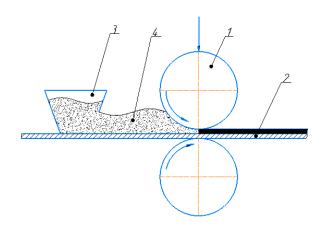


Рис. 1. Схема установки для предварительного формования: I – валки; 2 – полоса-подложка; 3 – дозирующее устройство; 4 – порошковый композиционный материал

На стальную полосу-подложку насыпают слой порошковой шихты и прокатывают между двумя прокатными валками на прокатном стане. Для обеспечения точной дозировки порошкового материала используется дозирующее устройство.

После формования полоса прокатывается между двумя прокатными валкамиэлектродами, подключенными к сварочному трансформатору. На рис. 2 представлена схема электроимпульсного спекания. Электрический ток подается кратковременными импульсами малого напряжения 4–10 В и большой силы 5–14 кА.

В результате этого метода металлический порошок формируется в сплошной композиционный слой, соединенный с подложкой.

Данным методом можно обрабатывать металлические смеси порошков на основе меди, олова, свинца и железа, без ущерба свойствам фторопластового наполнителя.

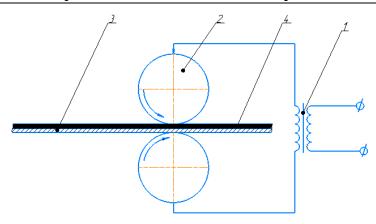


Рис. 2. Схема установки для электроимпульсного спекания: I — трансформатор; 2 — валки-электроды; 3 — полоса-подложка, 4 — спеченный композиционный материал

Разработанный метод применяется главным образом для изготовления материала, используемого для штамповки подшипников скольжения. Благодаря сочетанию металлических порошков и ПТФЭ нормальные и тангенциальные нагрузки в поверхностном слое трения воспринимаются не фторопластом, а металлическим пористым каркасом. В то же время, обладая более высоким коэффициентом термического расширения, ПТФЭ выделяется из пор, обеспечивая смазку при трении с коэффициентом сухого трения 0,13. Характер линейного износа материала приведен на рис. 3.

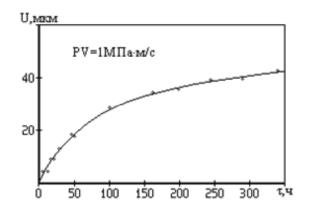


Рис. 3. Характер износа композиционного покрытия

Проведенные структурные и эксплуатационные исследования материала позволяют сделать заключение, что данный способ дает возможность создать с помощью термомеханического воздействия композиционную структуру с компонентами, имеющими большую разницу температур плавления. При этом избыточное механическое воздействие компенсирует недостаток термического воздействия, ограничивает объемный разогрев композита и сохраняет легкоплавкие компоненты.

Литература

1. Фторполимеры. – М.: Мир, 1975. – 445 с.