Литература

- 1 Мартьянов, Ю. В. Современные тенденции и перспективы развития производства проволоки и металлокорда для автомобильных шин / Ю. В. Мартьянов // І Международный молодежный научно-культурный форум студентов, магистрантов, аспирантов и молодых ученых : сб. материалов, Гомель, 5–7 марта 2024 г. / Гомел. гос. техн. ун-т им. П. О. Сухого. Гомель, 2024. С. 125. EDN OJAOIG.
- 2. Бобарикин, Ю. Л. Исследование процесса рихтовки тонкой высокоуглеродистой стальной проволоки / Ю. Л. Бобарикин, Ю. В. Мартьянов, О. Ю. Ходосовская // Современные методы и технологии создания и обработки материалов: сб. науч. тр. / Физ.-техн. ин-т НАН Беларуси; редкол.: В. Г. Залесский (гл. ред) [и др.]. Минск, 2024. С. 288–293.

ИССЛЕДОВАНИЕ ЭЛЕКТРОИМПУЛЬСНОГО НАНЕСЕНИЯ ПОРОШКОВОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ

А. Д. Тамков

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель А. Н. Швецов

Экспериментально определено электросопротивление антифрикционного композиционного материала для расчета температуры в зоне контакта при электроимпульсном нанесении антифрикционных металлофторопластовых порошковых покрытий.

Ключевые слова: электроимпульсное спекание, пресс-форма, электросопротивление композиционного материала.

Одним из перспективных методов нанесения износостойких самосмазывающихся порошковых покрытий является метод электроимпульсного спекания [1]. Данный способ позволяет получать покрытия из антифрикционного металлофторопластового порошкового материала, имеющего расширенный диапазон эксплуатационных свойств за счет возможности совместного использования фторопластового и металлических компонентов.

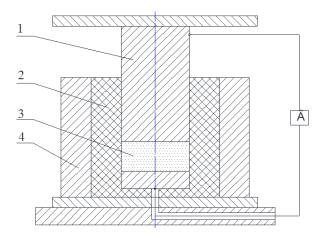
На основании известных физических величин температура в зоне деформации при пропускании через нее электрического тока определяется по зависимости [2]:

$$T_{\kappa} = \frac{I^2 \cdot t_{\rm c} \left[4\rho \cdot h / d_t^2 + R_{\rm M} \right]}{4m\sqrt{\lambda \cdot \gamma \cdot c} \cdot v \cdot \delta \cdot \sqrt{t_{\rm c}}} + \frac{P_{\rm m} \cdot h_{\rm m}}{4m\sqrt{\lambda \cdot \gamma \cdot c} \cdot S \cdot \sqrt{t_{\rm c}}},\tag{1}$$

где I — сила тока, A; m=1/2 — коэффициент, учитывающий неравномерность падения температуры; $t_{\rm c}$ — время сварки, c; $R_{\rm m}$ —электросопротивление материала, Ом; ρ — удельное электросопротивление, Ом · м; $h_{\rm n}$ — толщина проплавления, м; d_t — диаметр точки проплавления, м; λ — плотность материала, кг/м³; γ — коэффициент теплопроводности материала, $B r/(m \cdot K)$; c — удельная теплоемкость материала, Дж/К · кг; v — скорость движения роликов, м/с; h — начальная высота полосы до прокатки, м; $P_{\rm g}$ — контактное давление, Π a; S — площадь контакта прокатываемого материала с валками-электродами, м².

При расчете температуры в зоне контакта по данной зависимости наибольшую трудность составляет определение электросопротивления композиционной составляющей.

Целью данной работы являлось экспериментальное определение электросопротивления при нагреве антифрикционных композиционных материалов.


В качестве исследуемой композиции была выбрана следующая антифрикционная металлофторопластовая порошковая смесь при следующем соотношении компонентов, мас. %: Fe -62,5-77,0, ПТФЭ-4 -5-10, Cu -5-10, Ni -5-10, Sn -1-2,5, омедненного графита -4-5.

Для экспериментального определения электросопротивления была создана и использована опытная установка, структурная схема которой представлена на рис. 1. В соответствии с ней источник питания и измерительный мост подсоединен к прессформе, на которую воздействует исполнительная машина. Показания электросопротивления композиционного материала определялись с помощью гальванометра.

Также разработана и изготовлена пресс-форма, конструкция которой приведена на рис. 2.

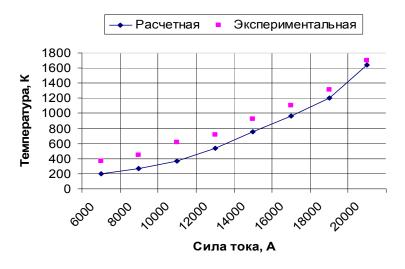
Рис. 1. Структурная схема опытной установки

 $Puc.\ 2.$ Конструкция пресс-формы: I – пуансон; 2 – электроизоляционный материал; 3 – композиционный материал; 4 – матрица

Для определения электросопротивления композиционного материала использовался статистический метод планирования многофакторного эксперимента. В качестве варьируемых факторов были выбраны температура и давление, воздействующие на композиционный материал.

Предварительно методом «крутого восхождения» с учетом технических характеристик экспериментальной установки была экспериментально определена область изменения интервалов варьирования. Дальнейшее исследование совместного влияния варьируемых факторов проводилось с помощью метода рототабельного планирования.

Для проверки однородности дисперсий параллельных опытов использовался критерий Кохрена. Гипотеза об однородностей дисперсий была подтверждена при уровне значимости $\alpha=0,5$, что позволяет использовать регрессионный анализ и провести статистическую обработку полученных результатов эксперимента. Коэффициенты регрессии рассчитывались на ЭВМ.


После обработки экспериментальных данных было получено уравнение регрессии, отражающее влияние факторов на исследуемую функцию. Проверка адекватности математической модели проводилось с помощью F-критерия Фишера для уровня значимости $\alpha=0.05$.

Уравнение регрессии для определения электросопротивления:

$$R = 1,56931 - 0,0246 \cdot T_k + 0,00009 \cdot T_k^2 - 1,35585 \cdot P + 0,3031 \cdot P^2 + 0,0107 \cdot T_k \cdot P.$$
 (2)

После подстановки значений в уравнение (1), которое решалось с помощью ЭВМ, рассчитанные значения температура в зоне контакта проверялись экспериментально с помощью скользящей термопары.

На основе экспериментальных и расчетных данных была построена зависимость температуры в контакте от импульсного электротока (рис. 3).

Рис. 3. Зависимость температуры от величины электроимпульсного тока: 1 – экспериментальная температура; 2 – расчетная температура

Как видно из графика рис. 3, характер изменения экспериментальной и теоретической температуры в контакте от давления одинаков. Это позволяет сделать заключение, что полученное уравнение регрессии для определения электросопротивления верно описывает данный процесс. Несколько завышенные значения экспериментальной температуры по сравнению с расчетной связаны с тем, что при расчете сопротивления деформации для определения давления при горячей прокатке термомеханические коэффициенты принимались как для компактного железного материала без посторонних включений.

Литература

- 1. Патент РБ № 18498. Способ получения покрытия из антифрикционного металлофторопластового порошкового материала / Бобарикин Ю. Л., Швецов А. Н., Шишков С. В. 2010.
- 2. Кочергин, К. А. Контактная сварка / К. А. Кочергин. Л. : Машиностроение, 1987. 240 с.

ВЛИЯНИЕ РЕЖИМОВ РЕЗАНИЯ НА СТОЙКОСТЬ ФРЕЗЫ С ИСПОЛЬЗОВАНИЕМ РАЗЛИЧНЫХ СОТС

Э. Р. Ваниев, Э. Ш. Джемилов, Э. Л. Бекиров, А. В. Крыжановский

Крымский инженерно-педагогический университет имени Февзи Якубова, г. Симферополь, Республика Крым

Приведены результаты моделирование стойкости инструмента от режимных параметров приработки, а также режимов резания приработанного инструмента и исследование их влияния на стойкость зубьев фрез отдельно для каждой из используемых технологических сред.

Ключевые слова: СОТС, фрезерование, режимы резания, стойкость, приработка, моделирование.

Постановка задачи и цель исследований. Фрезерование представляет собой разновидность механической обработки, функционирование которой как системы зависит от множества факторов (переменных), обуславливающих как протекание процесса резания в виде физико-химических явлений его сопровождающих, так и его выходные характеристики – производительность и себестоимость обработки, стойкость инструмента, показатели качества поверхности и др. [1–3].

Рассмотрение системы механической обработки и особенностей процесса резания как совокупности взаимосвязанных явлений, возникающих при образовании структуры, позволяет утверждать, что использование смазочно-охлаждающих технологических средств (СОТС) оказывает существенное влияние на их интенсивность и тем самым влияет на стойкость инструмента.

В современной теории резания процесс стружкообразования рассматривается как термомеханический процесс [2, 3], определяемый множеством взаимосвязанных первичных параметров механической обработки. Учитывая это, влияние СОТС на механизм процесса резания без взаимосвязи с другими факторами не может быть установлено в такой мере. Однако влияние СОТС на параметры процесса резания во взаимосвязи с другими факторами, определяющими систему механической обработки, практически не исследовано.

Исходя из термомеханического подхода в теории резания контактные нагрузки, действующие на инструмент, и температура резания для пары «обрабатываемый материал—инструмент», прежде всего, определяются режимами резания и СОТС, в присутствии которой происходит обработка. Поэтому исследование влияние режимов резания в некотором диапазоне их изменения и различных СОТС на стойкость инструмента при фрезеровании стали 12X18H10T является актуальной задачей и имеет большое практическое значение при разработке рекомендаций по использованию СОТС в различных условиях эксплуатации.

Цель исследования — установление влияние режимов резания на стойкость быстрорежущих фрез при использовании различных СОТС с использованием технологии минимальной смазки (ТМС) для разработки рекомендаций по рациональному использованию технологических сред при обработке стали 12X18H10T.