Литература

- 1. ЗЕРНОУБОРОЧНЫЙ КОМБАЙН GS12A1 PRO : рук-во по эксплуатации. URL: https://gomselmash.by/upload/iblock/0c9/kzk_12a_1_00000000aie_manual.pdf (дата обращения: 05.04.2025).
- 2. ЗЕРНОУБОРОЧНЫЙ КОМБАЙН GS12A1 : рук-во по эксплуатации. URL: https://gomselmash.by/upload/iblock/025/1si9she279yjowjxck388w68ilsjmerh/manual_kzk_2_ 12 0100000 03 2025.pdf (дата обращения: 05.04.2025).

АНАЛИЗ СИСТЕМ КОПИРОВАНИЯ РЕЛЬЕФА ПРИ РАБОТЕ ЖАТКИ

В. В. Лапотько, Ю. А. Андреевец

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель В. В. Пинчук

Рассмотрены конструктивные варианты систем копирования поверхности поля, изучены схемные решения гидросистем копирования, применяемых в сельскохозяйственной технике, в том числе и на ОАО «Гомсельмаш», их достоинства и недостатки, в результате разработан гидропривод гибкого режущего аппарата жатки транспортерной универсальной.

Ключевые слова: система копирования рельефа, система уравновешивания «пневмогидроаккумулятор – гидроцилиндр», сельскохозяйственная машина, жатка транспортерная.

Копирование рельефа при эксплуатации сельскохозяйственных и других типов мобильных машин заключается в обеспечении их эффективной работы на неровных поверхностях. Это достигается за счет создания и совершенствования систем, которые позволяют технике адаптироваться к особенностям рельефа.

Все разнообразие систем копирования рельефа поля можно разделить на три большие группы: пассивные, активные и гибридные [1–3] (рис. 1).

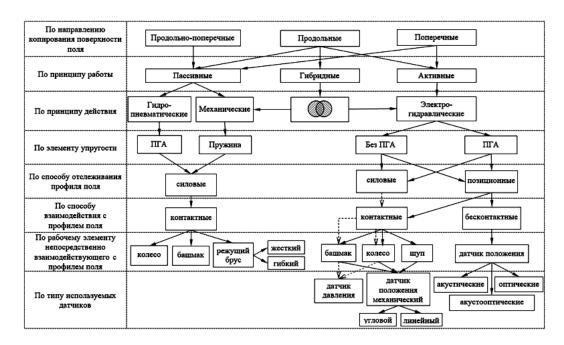
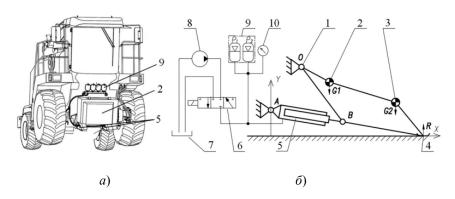



Рис. 1. Схема классификации систем копирования

К пассивным системам копирования можно отнести системы, у которых отсутствует управление параметрами, влияющими на высотное регулирование, в процессе работы. В таких системах механизм настраивается один раз перед работой и во время копирования рельефа поля не проводится перенастройка его параметров под изменяющиеся условия работы. Такие системы могут быть как механического типа, с использованием пружинно-рычажных механизмов, так и гидравлического, с использованием замкнутого контура «гидроцилиндр — пневмогидроаккумулятор». В этом случае пневмогидроаккумулятор совместно с гидроцилиндром выполняет роль упругого элемента (рис. 2).

В активных гидросистемах копирования рельефа поля применяется электрогидравлическое управление системой чувствительной к изменению нагрузки на выходной звене. В таких гидросистемах обеспечивается постоянный подпор в рабочей полости гидроцилиндра при регулировании нагнетания рабочей среды электрогидравлическим блоком управления.

Puc. 2. Кормоуборочный комбайн с пассивной системой копирования гидравлического типа:

a — общий вид сзади; δ — принципиальная схема; l — ось качания навески совместно с адаптером; 2 — точка G1 — центр тяжести навески; 3 — точка G2 — центр тяжести адаптера; 4 — точка R — опорный элемент адаптера; 5 — гидроцилиндр; 6 — гидрораспределитель; 7 — гидробак; 8 — гидронасос; 9 — блок пневмогидроаккумуляторов; 10 — датчик давления

К гибридным системам относятся системы, у которых в малом диапазоне копирования рельефа поля работает механическая система, а при выходе из этого диапазона — работает активная электрогидравлическая система. Как правило, с помощью активной электрогидравлической системы происходит перевод механической системы в новую зону работы на уровне макрорельефа.

Пассивные системы копирования — исторически первая группа систем уравновешивания. Они хорошо себя зарекомендовали в узком диапазоне копирования, но эти системы не могут автоматически перенастраиваться под резкие изменения высоты профиля поля. Применение активных систем копирования предполагает автоматизацию высотного регулирования рабочих органов с помощью различных средств и позволяет автоматизировать и управлять процессом копирования непрерывно в ходе работы. Однако и эти системы не лишены недостатков, один из которых – ограничение быстродействия на скоростях движения выше 6 км/ч. Гибридные системы копирования совмещают положительные качества первых двух групп и обеспечивают работоспособность системы копирования сельскохозяйственных машин на повышенных скоростях.

На основании гибридных гидросистем автоматического копирования поверхности поля, которые разработаны и используются в комбайнах и косилках производства НТЦК ОАО «Гомсельмаш» [4], разработана принципиальная схема гидропривода режущего аппарата жатки транспортерной универсальной (рис. 3). Жатка агрегатируется с комбайном КЗК-2124 и предназначена для уборки зерновых колосовых культур, рапса и сои на равнинных полях с уклоном до 8°. Гидросистема жатки должна обеспечивать при эксплуатации копирование режущего аппарата по носкам сегментов относительно рамы жатки, копирование в продольном направлении по носкам сегментов режущего аппарата и копирование в поперечном направлении по носкам крайних сегментов режущего аппарата.

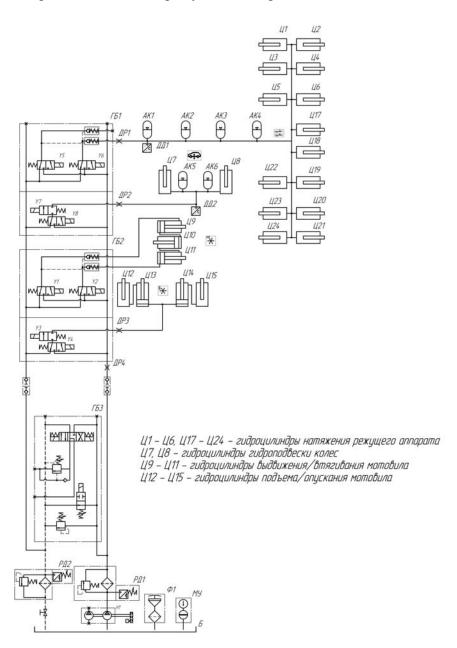


Рис. 3. Гидропривод гибкого режущего аппарата жатки транспортерной

Режущий аппарат жатки сегментно-пальцевого типа представляет собой гибкий брус, к которому крепятся ножи. Подъем и опускание бруса с режущим аппаратом обеспечивается цилиндрами Ц1-Ц6, Ц17-24. Копирование рельефа при движении по полю обеспечивается поддержанием давления в гидроцилиндрах с помощью пневмогидроаккумуляторов. Изменение высоты неровностей поверхности поля приводит к изменению нагрузки на опорном элементе режущего аппарата, которая, в свою очередь, ведет к изменению давления в полостях гидроцилиндров. Датчик давления ДД1 формирует сигнал, который сравнивается в регуляторе с задающим воздействием, и создает принудительное управляющее воздействие на гидроцилиндры при помощи гидроблока ГБ1. В случае увеличения давления происходит нагнетание рабочей жидкости в гидроцилиндры – режущий аппарат поднимается. В случае снижения давления происходит слив рабочей жидкости из гидроцилиндров под действием сил тяжести – режущий аппарат опускается. Отслеживание рельефа при этом производится автоматически, аналогично следящим системам копирования, что увеличивает быстродействие системы и позволяет комбайну работать без потерь на скоростях движения выше 6 км/ч.

Проведен обзор различных систем копирования поверхности поля, применяемых в конструкциях сельскохозяйственных уборочных машин, изучены типовые схемные решения, используемые в технике НТЦК ОАО «Гомсельмаш», и разработана схема гидропривода гибкого режущего аппарата жатки транспортерной. Разработанная система позволяет автоматически изменять положение отдельных частей режущего аппарата и осуществлять плавающее движение бруса для отслеживания рельефа поля за счет применения в составе гидропривода пневмогидроаккумуляторов.

Литература

- 1. Долгов, И. А. Уборочные сельскохозяйственные машины. (Конструкция, теория, расчет) : учебник / И. А. Долгов. Ростов-н/Д : ИЦ ДГТУ, 2003. 707 с.
- 2. Устинов, А. Н. Зерноуборочные машины : учеб. для начал. проф. образования / А. Н. Устинов. М. : Академия, 2003. 128 с.
- 3. Ларюшин, Н. П. Сельскохозяйственные машины : учеб. пособие / Н. П. Ларюшин. Пенза : РИО ПГСХА, 2011.-243 с.
- Рехлицкий, О. В. Математическое описание системы уравновешивания адаптеров мобильной кормоуборочной машины с применением пневмогидроаккумулятора / О. В Рехлицкий., Ю. В. Чупрынин // Механика машин, механизмов и материалов. – 2014. – № 1 (26). – С. 40–48.