Таким образом, LS-система позволяет сохранять постоянной скорость гидродвигателей, действующих одновременно, независимо от изменения давления в гидросистеме, что повышает эффективность работы и КПД гидропривода в целом.

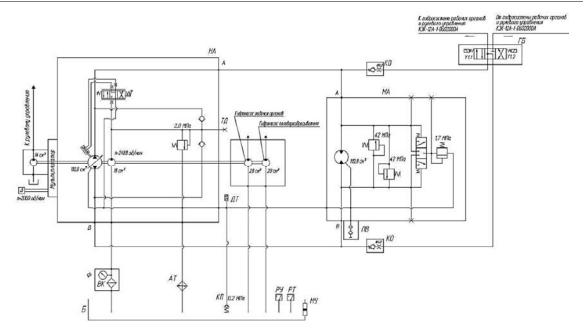
Литература

- 1. Гидравлика и гидропневмопривод : учеб. пособие / П. Я. Крауиньш, С. А. Смайлов, Б. Б. Мойзес ; Том. политехн. ун-т , Ин-т дистанцион. образования. Томск : Изд-во ТПУ, 2006. 223 с.
- 2. Шабалин, Р. А. К вопросу использования гидропривода передних колес транспортнотехнологических машин с целью повышения проходимости / Р. А. Шабалин, К. А. Асанбеков // Инновационное развитие техники и технологий наземного транспорта : IV Всерос. науч.-практ. конф., Екатеринбург, 2023 г. / Урал. ун-т. – Екатеринбург, 2023. – С. 77–80.
- 3. Гинзбург, А. А. Анализ потерь мощности гидросистем с клапанной и объемной адаптацией к нагрузке при равномерном распределении расхода / А. А. Гинзбург, Ю. А. Андреевец // Современные проблемы машиноведения: сб. науч. тр.: в 2 ч. / М-во образования Респ. Беларусь, Гомел. гос. техн. ун-т им. П. О. Сухого, Таиз. ун-т; под общ. ред. А. А. Бойко. Гомель, 2023. Ч. 1. С. 58–61.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ГИДРОСИСТЕМ ХОДОВОЙ ЧАСТИ ЗЕРНОУБОРОЧНЫХ КОМБАЙНОВ GS12A1 PRO И GS12A1

М. О. Прядко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

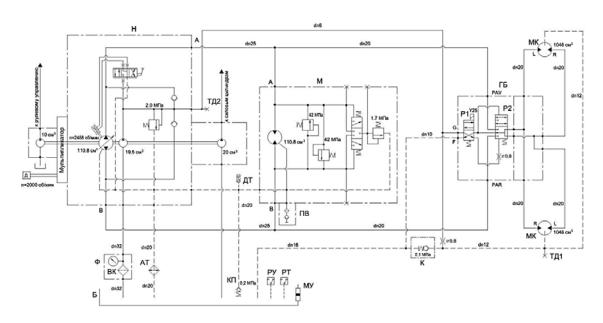

Научный руководитель Ю. А. Андреевец

Произведено сравнение конструктивных особенностей и эксплуатационных характеристик зерноуборочных комбайнов GS12A1 (с передним приводом) и GS12A1 PRO (с полным приводом), производимых ОАО «Гомсельмаш» по нескольким критериям: простота гидросистемы и влияние типа привода на производительность. Отмечено, что результаты исследования позволяют объективно оценить преимущества и недостатки каждой системы привода для различных условий эксплуатации и потребностей сельскохозяйственных предприятий.

Ключевые слова: зерноуборочный комбайн GS12A1, OAO «Гомсельмаш», комбайн GS12A1 PRO, передний привод, полный привод, гидравлическая система.

Современное сельское хозяйство предъявляет высокие требования к эффективности и надежности сельскохозяйственной техники. Зерноуборочные комбайны, являясь ключевым звеном в процессе уборки урожая, постоянно совершенствуются. Выбор между комбайнами с передним и полным приводом — одно из важнейших решений для сельхозпроизводителей, так как напрямую влияет на экономическую эффективность и производительность работ. ОАО «Гомсельмаш», один из ведущих производителей сельхозтехники, предлагает модели комбайнов GS12A1 и GS12A1 PRO, представляющие собой яркий пример сравнения двух различных концепций привода.

Комбайн зерноуборочный самоходный GS12A1 PRO с передним приводом (рис. 1), имеет сравнительно простую гидравлическую систему для управления ходовой частью [1].


Рис. 1. Схема гидравлическая принципиальная гидросистемы привода ходовой части зерноуборочного комбайна GS12A1 PRO

Данная гидросистема относится к двухпоточной, гидродифференциальной, в которой происходит разделение единого потока мощности на две параллельные ветви – гидравлическую и механическую, которые затем вновь соединяются. От вала двигателя внутреннего сгорания поток мощности поступает на механическую коробку передач, где происходит его разделение и один поток энергии поступает в механический дифференциально-планетарный редуктор, а другой поток — в блок гидрообъемной передачи, состоящий из регулируемых объемных насоса НА и гидромотора МА. Затем оба потока объединяются на выходном валу и увеличенный поток мощности поступает на вал трансмиссии комбайна. При этом основная нагрузка ложится на переднюю ось комбайна, что упрощает конструкцию и снижает стоимость. Тандем-насос гидравлической системы также питает гидросистему рулевого управления и торможения. Изменение скорости движения комбайна и реверсирование осуществляется изменением подачи насосного агрегата и направления потока жидкости при переключении механической коробки передач, установленной после двигателя.

В данной гидросистеме регулируемый насос НА и нерегулируемый мотор МА, соединяются трубопроводами, давление в которых ограничивается предохранительными клапанами, входящими в состав гидромотора и настроенными на максимальное рабочее давление 42 МПа. Регулирование подачи насоса осуществляется изменением угла наклона диска аксиально-поршневого насоса при помощи гидроцилиндра управления. Управление гидроцилиндром осуществляется водителем комбайна с переключения распределителя насоса с ручным управлением.

Система подпитки (насос с рабочим объемом 18 см³) обеспечивает постоянное количество рабочей жидкости, циркулирующей между насосом НА и гидромотором МА, а следовательно и постоянную частоту вращения на валу гидромотора. Поэтому в данной гидросистеме поток мощности от двигателя является постоянным, но при движении по неровным участкам поля мощность на выходе гидростатической трансмиссии может изменяться, что снижает общий КПД привода.

Комбайн GS12A1, в свою очередь, оборудован сложной полноприводной гидросистемой (рис. 2), включающей в себя не только гидравлические элементы управления, но и механизмы распределения крутящего момента между осями [2].

Puc. 2. Схема гидравлическая принципиальная гидросистемы привода ходовой части зерноуборочного комбайна GS12A1

В полноприводной системе комбайна GS12A1 дополнительно используются гидромоторы на каждое колесо управляемого заднего моста, обеспечивающие оптимальное распределение крутящего момента на колеса в зависимости от полевых условий. Такая схема позволяет комбайну преодолевать сложные участки с высокой проходимостью, например, крутые склоны, заболоченные почвы, или поля с высокой влажностью. Более сложная конструкция полноприводной системы, помимо наличия дополнительных, дорогостоящих элементов, таких, как гидромоторы и распределители, требует дополнительного технического обслуживания и дороже в ремонте.

Рассмотрим влияние типа привода на производительность и маневренность. Передний привод комбайна GS12A1 PRO обеспечивает достаточную маневренность на ровных полях, но его производительность может снижаться на сложных участках. Полный привод комбайна GS12A1 значительно повышает производительность за счет лучшей проходимости и тягового усилия, позволяя работать на более широком диапазоне почвенных и климатических условий без снижения скорости уборки.

Таким образом, выбор между комбайнами с передним и полным приводом зависит от конкретных условий эксплуатации и приоритетов сельхозпроизводителя. Комбайн GS12A1 PRO с передним приводом подходит для работ на ровных полях с легкими почвами, где требования к проходимости невысоки, комбайн GS12A1 с полным приводом предпочтительнее при работе на сложных участках, в условиях высокой влажности почвы или на склонах, где важны высокая проходимость и тяговое усилие. Экономическая целесообразность того или иного выбора должна определяться на основе детального анализа условий эксплуатации и затрат на приобретение, обслуживание и ремонт техники.

Литература

- 1. ЗЕРНОУБОРОЧНЫЙ КОМБАЙН GS12A1 PRO : рук-во по эксплуатации. URL: https://gomselmash.by/upload/iblock/0c9/kzk_12a_1_00000000aie_manual.pdf (дата обращения: 05.04.2025).
- 2. ЗЕРНОУБОРОЧНЫЙ КОМБАЙН GS12A1 : рук-во по эксплуатации. URL: https://gomselmash.by/upload/iblock/025/1si9she279yjowjxck388w68ilsjmerh/manual_kzk_2_ 12 0100000 03 2025.pdf (дата обращения: 05.04.2025).

АНАЛИЗ СИСТЕМ КОПИРОВАНИЯ РЕЛЬЕФА ПРИ РАБОТЕ ЖАТКИ

В. В. Лапотько, Ю. А. Андреевец

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель В. В. Пинчук

Рассмотрены конструктивные варианты систем копирования поверхности поля, изучены схемные решения гидросистем копирования, применяемых в сельскохозяйственной технике, в том числе и на ОАО «Гомсельмаш», их достоинства и недостатки, в результате разработан гидропривод гибкого режущего аппарата жатки транспортерной универсальной.

Ключевые слова: система копирования рельефа, система уравновешивания «пневмогидроаккумулятор – гидроцилиндр», сельскохозяйственная машина, жатка транспортерная.

Копирование рельефа при эксплуатации сельскохозяйственных и других типов мобильных машин заключается в обеспечении их эффективной работы на неровных поверхностях. Это достигается за счет создания и совершенствования систем, которые позволяют технике адаптироваться к особенностям рельефа.

Все разнообразие систем копирования рельефа поля можно разделить на три большие группы: пассивные, активные и гибридные [1–3] (рис. 1).

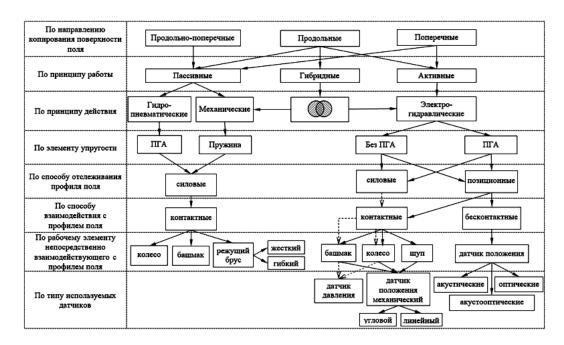


Рис. 1. Схема классификации систем копирования