При отсутствии ошибок и коллизий анимация будет полностью имитировать движение проектируемого насоса.

Использование КОМПАС-3D Анимация позволяет наглядно продемонстрировать движение механизмов, визуализировать работу отдельных узлов и компонентов, а также выявить потенциальные проблемы в их взаимодействии.

Литература

- 1. Механика: Анимация. Машиностроительное приложение / САПР Компас-3D. URL: https://kompas.ru/kompas-3d/application/machinery/animation/.
- 2. Объемные гидро- и пневмомашины : учеб.-метод. пособие по курсовому проектированию для студентов специальности 1-36 01 07 «Гидропневмосистемы мобильных и технологических машин» днев. и заоч. форм обучения / Д. В. Лаевский, Ю. А. Андреевец. Гомель : ГГТУ им. П. О. Сухого, 2016. 137 с.

ПРИМЕНЕНИЕ ТЕХНОЛОГИИ МИКРОДУГОВОГО ОКСИДИРОВАНИЯ ДЛЯ ПОВЫШЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ

В. Ю. Писарев

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель И. И. Злотников

Рассмотрена технология нанесения оксидно-керамических покрытий на изделия из алюминиевых сплавов методом микродугового оксидирования. Процесс проводили на переменном токе частотой 50 Γ ц при постоянной плотности тока 6 $A/\partial m^2$ с использованием щелочносиликатного электролита. Представлены результаты экспериментальных исследований по определению коррозионной стойкости полученных покрытий, в том числе в условиях контактной коррозии. Установлено, что покрытие успешно защищает поверхность алюминиевых деталей от различных видов коррозии. Отмечено, что особенно эффективно применение оксидно-керамических покрытий в условиях контактной коррозии «алюминий—сталь».

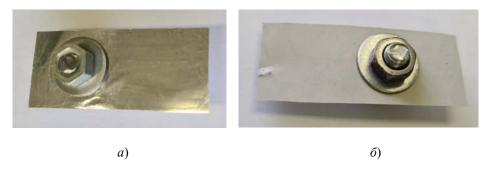
Ключевые слова: микродуговое оксидирование, алюминиевые сплавы, контактная коррозия, коррозионностойкие покрытия.

Технология микродугового оксидирования (МДО) заключается в том, что под действием высокого напряжения, создаваемого между находящейся в электролите деталью (анодом) и катодом, на поверхности детали возникают мигрирующие точечные микродуговые разряды, под действием которых поверхностный слой детали оксидируется с образованием керамического покрытия, прочно сцепленного с основой. Получаемое покрытие состоит преимущественно из кристаллического оксида материала анода – для алюминия это γ -Al₂O₃ во внутренних слоях покрытия и муллит (3Al₂O₃·2SiO₂) – во внешних. Такие покрытия обладают повышенной твердостью, износостойкостью, высокими диэлектрическими свойствами и находят применение в различных областях техники. Регулируя составы электролита и режимы проведения оксидирования, можно получать антикоррозионные и износостойкие, декоративные и изоляционные, теплозащитные и упрочняющие покрытия. В настоящее время МДО считается наиболее перспективным способом модифицирования поверхности деталей из алюминиевых сплавов, так как позволяет получать покрытия с более высокими физико-химическими и механическими свойствами по сравнению с другими методами [1].

Алюминиевые сплавы благодаря прочности, легкости и простоте обработки получили большое распространение при изготовлении различных деталей и узлов машин. Высокие эксплуатационные качества и большое разнообразие сплавов с различными свойствами позволили алюминию найти широкое применение и в нефтедобывающей промышленности. В настоящее время успешно применяются такие изделия, как бурильные, насосно-компрессорные, обсадные и прочие виды труб, элементы насоснокомпрессорного оборудования, резервуары для транспортирования и хранения нефти, фасонные изделия и др. В нефтяной промышленности одними из главных достоинств алюминиевых изделий становятся их низкий удельный вес и более высокая удельная прочность, вследствие чего, в частности, снижаются затраты на проведение спускоподъемных операций. Это имеет особое значение в современных условиях, когда возрастает необходимость разработки новых залежей, располагающихся на больших глубинах и в более сложных геологических пластах. Но алюминий и его сплавы в контакте со сталями образуют контактную гальваническую пару, в которой алюминий, имея более отрицательный электрохимический потенциал, является анодом и подвергается коррозионному разрушению. Данная проблема возникает при соединении алюминиевых труб стальным замком, в резьбовых соединениях и при других типах фиксации деталей на основе алюминия с помощью стального крепежа. К одному из методов защиты алюминиевых сплавов от коррозии относится нанесение на детали защитных коррозионностойких покрытий, в частности, методом МДО [2].

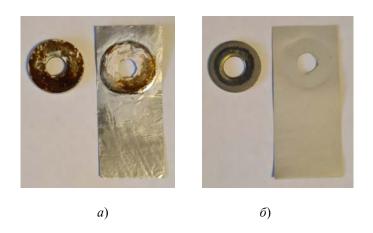
Цель работы – используя технологию МДО, нанести на поверхность алюминиевых образцов защитное оксидно-керамическое покрытия и изучить его коррозионную стойкость, в том числе в условиях контактной коррозии.

Покрытия наносили на алюминиевую фольгу марки АД1 толщиной 100 мкм. Основываясь на ранее проведенных в ГГТУ им. П. О. Сухого исследованиях [3, 4], в качестве электролита использовали раствор, содержащий силикат натрия (натриевое жидкое стекло) в количестве 50 г/л и гидроксид калия – 2 г/л. Процесс МДО проводили в симметричном анодно-катодном режиме на переменном токе частотой 50 Γ ц при постоянной плотности тока $j = 6 \text{ A/дм}^2$, которую поддерживали, повышая напряжение по мере роста толщины покрытия, начиная с нескольких вольт до 260 В. Коррозионные испытания проводили по ускоренной методике, приближенной к ГОСТ 9.042-75 при постоянном погружении образцов в 3%-й раствор NaCl при температуре 50 ± 5 °C. Для проведения испытаний на контактную коррозию изготавливали конструктивно-подобный образец, имитирующий болтовое соединение «алюминий – сталь». Контактная пара состояла из прямоугольного образца алюминия АД1 без покрытия или с покрытием и шайбы М10 из стали марки ст.3. Два испытуемых металла скрепляли болтовым соединением (болт и гайка М8 из стали марки С1035 с цинковым покрытием). Контактная пара была отделена от материала болта и гайки прокладкой из полиэтилена.


Результаты коррозионных испытаний алюминиевых образцов без покрытия и с покрытием приведены в таблице.

Результаты испытаний на коррозию

Время испытаний	Без покрытия	С покрытием
2,5 суток	Первые признаки коррозии в виде мелких белых хлопьев	Признаков коррозии нет
5 суток	Почти сплошная коррозия	
7 суток	Сплошная коррозия с признаками язвенной	


Как свидетельствуют полученные результаты, нанесение методом МДО оксидно-керамических покрытий обеспечивает высокую стойкость образцов из алюминия в условиях воздействия агрессивной среды.

На рис. 1 показан вид конструктивно-подобного образца, используемого для исследования на контактную коррозию.

Рис. 1. Исходный конструктивно-подобной образец без покрытия (a) и с покрытием (δ)

На рис. 2 приведен вид контактной пары после 3 суток испытаний на коррозию. Видно, что при использовании алюминиевого образца без покрытия оба металла подвержены коррозии. При этом в местах непосредственного контакта металлов коррозия алюминия и стали носит сплошной характер. За пределами контакта признаки коррозии на поверхности алюминия прослеживаются до расстояния 5–10 мм. В случае алюминия с покрытием на стальной шайбе видны начальные признаки коррозии, а на алюминии с покрытием признаков коррозии нет по всей площади образца.

 $Puc.\ 2.$ Разобранный конструктивно-подобной образец после испытаний на коррозию без покрытия (a) и с покрытием (b)

Таким образом, проведенные исследования показали, что технология МДО позволяет получать на поверхности изделий из алюминия керамическое покрытие, стойкое к воздействию агрессивных сред. Такое покрытие может успешно защищать алюминиевые детали от различных видов коррозии. Особенно эффективно применение МДО-покрытий в условиях контактной коррозии «алюминий—сталь».

Литература

- 1. Микродуговое оксидирование (теория, технология, оборудование) / И. В. Суминов, А. В. Эпельфельд, В. Б. Людин [и др.]. М. : ЭКОМЕТ, 2005. 368 с.
- 2. Трушкина, Т. В. Коррозионная стойкость МДО-покрытий в агрессивных средах / Т. В. Трушкина, А. Е. Михеев, А. В. Гирн // Вестник СибГАУ. 2014 № 1. С. 179–184.
- 3. Злотников, А. И. Повышение межслоевой адгезии в гибких фольгированных диэлектриках методом микродугового оксидирования / А. И. Злотников, Г. В. Петришин, И. И. Злотников // Вестник Гомельского государственного технического университета имени П.О. Сухого. − 2023. № 1 (92). С. 41–47.
- 4. Злотников, И. И. Повышение антифрикционных свойств керамических покрытий, полученных методом МДО на алюминиевых сплавах / И. И. Злотников, В. М. Шаповалов // Трение и износ. 2019. Т. 40, № 5. С. 128–131.

ФУНКЦИОНАЛИЗАЦИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ДЛЯ ЛАЗЕРНОЙ НАПЛАВКИ

М. В. Невзоров

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Г. В. Петришин

Отмечено, что в последние годы функционализированные металлические порошки вызывают все больший интерес в аддитивном производстве (в частности, в лазерной порошковой плавке) благодаря их улучшенной текучести и технологичности, которые могут обеспечить более высокие конечные механические или физические свойства напыляемых покрытий на детали, такие, как повышенная твердость, более высокая прочность и плотность. Представлен анализ получаемых в настоящее время порошковых покрытий и процессов, используемых для их производства, технологичность систем с покрытиями, полученными с помощью лазерной наплавки.

Ключевые слова: функционализированные металлические порошки, покрытия, лазерная наплавка.

Технологии производства, основанные на порошковой металлургии (ПМ), играют важную роль в нескольких различных отраслях промышленности [1, 2], в том числе и в области технологии обработки новых или изношенных деталей машиностроительного обоурдования для получения износостойких и прочных поверхностных покрытий. Необходимость получения таких покрытий привела к разработке функционализированных базовых материалов [3] и оптимизации технологических процессов. В связи с этим в ремонтных работах значительно расширилось использование модифицированных металлических порошков с покрытием, что позволяет улучшить обрабатываемость порошков или изменить микроструктуру, механические, физические и термические свойства готовой детали. Покрывая поверхность порошков, можно изменять температуру плавления [4], сыпучесть и поглощающую способность [5] самого порошка.

Микроструктурные характеристики также могут быть изменены путем нанесения второй фазы, в частности, нанокерамических частиц, таких, как структуры на основе ZrO_2 , Al_2O_3 , B_4C , SiC, TiB_2 , C [6]. Это может привести к появлению механизмов измельчения зерна, что повышает механическую прочность [7]. Механические свойства готовых изделий, такие как прочность на сжатие, твердость, предел текучести, и физические свойства, такие, как плотность, можно улучшить, используя порошки с покрытием [8].