напряжения составляет до 10 мс. БУЗ и ПУИ осуществляют так же необходимые защиты , блокировки и контроль за состоянием БАВР с ТСВ. Работа БАВР с ТСВ при сетевом провале напряжения от источника N1 иллюстрируется фрагментом осциллограммы представленной на Рис. 2.

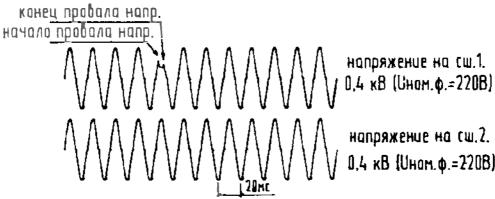


Рис. 2. Фрагмент осциллограммы работы БАВР с TCB при сетевом провале напряжения от источника N1.

В настоящее время в стадии макетных испытаний находится пусковой орган БУЗ, выполненный с применением микро Θ BM , который позволяет повысить быстродействие БАВР с TCB до 5 мс.

Выводы.

- 1. Дополнительным требованием, предъявляемым к источникам питания ПЧЭ, обеспечивающих непрерывный технологический процесс, является наличие нормального напряжения на одном из источников не только в послеаварийном режиме, но и в момент КНЭ на другом.
- 2. Устройство БАВР с TCB обеспечивает бесперебойное электроснабжение технологических установок непрерывного производства при сетевых провалах напряжения на одном из источников.

АВТОМАТИЗАЦИЯ КОНТРОЛЯ ЗА ЭНЕРГОПОТРЕБЛЕНИЕМ НА ПРОМЫШЛЕННОМ ПРЕДПРИЯТИИ

А.В. Сычев

Гомельский политехнический институт им. П.О.Сухого (Гомель)

Одним из эффективных средств энергосбережения на промышленных предприятиях является учет расхода энергоресурсов как предприятия в целом, так и его отдельных производств, цехов и энергоемких агрегатов с дифференциацией энергопотребления по рабочим сменам, суткам и зонам суток. Обеспечить полный, достоверный и оперативный контроль за энергопотреблением можно при внедрении специализированных автоматизированных программно-технических комплексов. При внедрении таких систем у энергослужб промышленных предприятий появляется возможность сопоставлять данные об энергопотреблении с режимами работы технологического оборудования и выпуском продукции, что в свою очередь, позволяет получить точную информацию для расчета удельных расходов и в дальнейшем ежедневно контролировать потребление энергоресурсов, выявлять источники перерасходов энергии. Решение таких задач возможно на базе серийно выпускаемых технических средств автоматизации учета энергоресурсов в комплексе с ЭВМ и соответствующим программным обеспечением.

На Рис. 1 приведена структурная схема программного обеспечения автоматизированной системы учета энергоресурсов для промышленного предприятия на базе КТС «СИМЭК», а также информационные потоки данных в рассматриваемой системе.

Программное обеспечение (ПО) АСУЭ представляет собой комплекс программ, с помощью которого решаются две задачи: оперативный контроль за энергопотреблением и учет энергоресурсов на предприятии. ПО имеет интерактивный дружественный пользовательский интерфейс, в котором широко используются иерархические меню с указанием всего набора альтернативных вариантов выбора действий в текущем состоянии и способов их

инициирования, а также развитая диагностика ошибочных ситуаций.

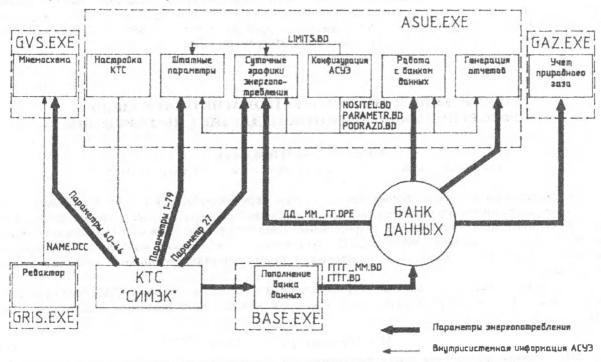


Рис. 1. Структура программного обеспечения и потоки данных автоматизированной системы контроля энергопотребления промышленного предприятия.

В состав ПО входят следующие программные модули:

РЕДАКТОР – предназначен для построения средствами векторной графики цветных мнемосхем энергопотребления объекта учета с расстановкой на них приборов (точек) учета.

Созданный в редакторе файл-схема в дальнейшем используется модулем МНЕМОСХЕМА.

МНЕМОСХЕМА — позволяет контролировать показания приборов учета непосредственно на схеме энергоснабжения с обновлением информации через каждые 3 минуты. Контролироваться могут следующие параметры энергопотребления (поток данных Д1):

- мощность энергопотребления за прошедшие 3 минуты;
- энергия за текущие сутки;
- энергия за расчетный период.

ШТАТНЫЕ ПАРАМЕТРЫ – позволяет оперативно контролировать штатные параметры энергоучета КТС «СИМЭК» (поток данных Д2) в темпе процесса их изменения в самом КТС.

НАСТРОЙКА КТС – позволяет полностью инициализировать КТС «СИМЭК» с клавиатуры ПЭВМ.

СУТОЧНЫЕ ГРАФИКИ ЭНЕРГОПОТРЕБЛЕНИЯ – позволяет просмотреть изменение и характер суточного энергопотребления одной из восьми главных групп учета в виде столбиковых диаграмм из 48 значений средних получасовых мощностей (поток данных ДЗ).

КОНФИГУРАЦИЯ АСУЭ – в этом модуле производится настройка программного обеспечения АСУЭ на систему энергопотребления конкретного объекта-предприятия.

РАБОТА С БАНКОМ ДАННЫХ – обеспечивает пользователю доступ к данным об энергопотреблении, хранящимся в базе данных с суточными и месячными параметрами энергопотребления.

ГЕНЕРАЦИЯ ОТЧЕТОВ — выдает на печатающее устройство суточные сводки об энергопотреблении в различных формах.

ПОПОЛНИТЕЛЬ БАНКА ДАННЫХ – определяет по текущей дате глубину отсутствия информации о суточном энергопотреблении в базе данных и при необходимости пополняет ее используя ретроспективные возможности КТС «СИМЭК».

УЧЕТ ПРИРОДНОГО ГАЗА – производит расчет потребления газа, приведенного к нормальным условиям.

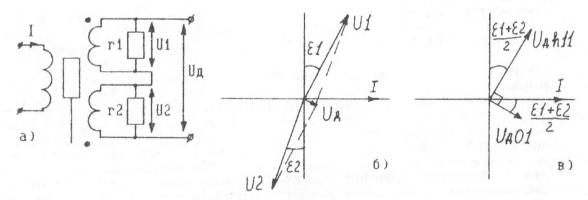
Программное обеспечение работает в среде операционной системы MS-DOS версии 3.3 и более поздних.

Внедрение автоматизированных систем учета энергоресурсов позволяет быстро выявлять источники повышенного расхода энергоресурсов, упорядочить контроль за энергопотреблением как предприятия в целом, так и его производственных цехов, оперативно контролировать расход энергоресурсов на единицу выпускаемой продукции.

ПОСТРОЕНИЕ И АНАЛИЗ ЭЛЕКТРОМАГНИТНОЙ МОДЕЛИ ДИФФЕРЕНЦИАЛЬНО-МАГНИТНОГО ДАТЧИКА ПЕРЕМЕЩЕНИЯ

Е.Г.Абаринов, П.П.Изотов

Гомельский политехнический институт им. П.О.Сухого (Гомель)


Дифференциально-трансформаторный датчик перемещения (ДТД) широко применяется для преобразования в электрический сигнал давления, расхода, уровня, линейных перемещений. В таких преобразователях деформация чувствительного элемента (мембранного блока, например) перемещает плунжер ДТД, что приводит к изменению коэффициента передачи между первичной обмоткой возбуждения и двумя секциями вторичной обмотки, включенными встречно.

 $B\ [1]$ для возможности оценки метрологической взаимозаменяемости ДТД было предложено характеризовать его коэффициент передачи комплексной взаимной индуктивностью \overline{M} :

$$\vec{M} = Mh \cdot \cos(\epsilon^{C}) \cdot e^{-j\delta} + Mo \cdot e^{-j(90^{\circ} + \delta^{\circ})}$$
 (1)

где Mh — эквивалентная взаимная индуктивность, зависящая от перемещения плунжера h, Mo — остаточная взаимная индуктивность, не зависящая от h, \mathscr{E} — угол потерь, а взаимозаменяемость устанавливать по величинам Mo и \mathscr{E} .

Это позволило разработать измерительную аппаратуру [2] метрологических параметров ДТД по выходному сигналу Uд и наладить серийный выпуск взаимозаменяемых ДТД на московском заводе «Манометр» и Ивано-Франковском заводе «Промприбор» [3,4]. Однако в [1] не установлены причины возникновения Мо и причины, влияющие на ее величину. Это позволяет сделать рассматриваемая ниже электрическая модель ДТД, эквивалентная схема которой приведена на Рис. 1а и которая учитывает, что вторичные полуобмотки W1 и W2 могут иметь разные углы потерь £1 и £2 (на Рис. 1а их моделируют резисторы r1 и r2) и разные коэффициенты передачи. На Рис. 16 приведена векторная диаграмма, отражающая взаимное расположение векторов напряжения на первой Ū1 и второй Ū2 полуобмотках ДТД, питающего тока $\overline{1}$ и выходного сигнала $\overline{1}$ Uд.

Puc. 1. Электрическая модель ДТД: a – эквивалентная схема; б, b – векторные диаграммы.

При перемещении плунжера ДТД потокосцепление одной вторичной полуобмотки с первичной будет увеличиваться, а другой уменьшаться. Поэтому напряжение на одной вторичной обмотке будет увеличиваться, а на другой – уменьшаться. Перемещения плунжера по сравнению с его длиной невелики, поэтому можно считать, что углы потерь вторичных обмоток $\mathcal{E}1$ и $\mathcal{E}2$ при этом изменяться не будут, а вторичные напряжения можно представить состоящими из неизменяемой части $\overline{\mathrm{U}}$ 0, не зависящей от перемещения h, и изменяемой д $\overline{\mathrm{U}}$ 1, зависящей от h: