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Abstract

The management of modern water supply systems requires a detailed analysis of con-
sumption patterns in order to optimize pump operation schedules, reduce energy costs,
and support the development of intelligent management systems. Traditional clustering
algorithms are applied for these tasks; however, their limitation lies in the need to predefine
the number of clusters. The aim of this study was to develop and validate a non-parametric
method for clustering daily water consumption profiles based on a modified DBSCAN
algorithm. The proposed approach includes the automatic optimization of neighborhood
radius and the minimum number of points required to form a cluster. The input data
consisted of half-hourly water supply and electricity consumption values for the water
supply system of Gomel (Republic of Belarus), supplemented with the time-of-day fac-
tor. As a result of the multidimensional clustering, two stable regimes were identified: a
high-demand regime (6:30-22:30), covering about 46% of the data and accounting for more
than half of the total water supply and electricity consumption, and a low-demand regime
(0:30-6:00), representing about 21% of the data and forming around 15% of the resources.
The remaining regimes reflect transitional states in morning and evening periods. The
obtained results make it possible to define the temporal boundaries of the regimes and to
use them for data labeling in the development of predictive water consumption models.

Keywords: water consumption; energy consumption; intra-daily patterns; non-parametric
clustering; DBSCAN; temporal labeling; energy-efficient management

1. Introduction

In recent years, the capabilities for collecting information on water consumption pat-
terns in urban water supply systems have significantly expanded. Modern technologies
make it possible to form detailed databases that can be aggregated to the required level and
integrated with other data sources. This creates the conditions for identifying the factors
that determine water demand. Such factors may be external (climate, socio-economic con-
ditions, demography) or internal (seasonal and daily fluctuations reflected in time series).
Numerous studies have demonstrated the impact of temperature on water consumption in
both agriculture and domestic use [1-3]. Socio-economic factors such as building density
and population income levels also shape the basis of demand and influence the operating
modes of water intake facilities [4-6]. Thus, the identification and consideration of fac-
tors affecting water consumption is a relevant task for forecasting and managing water
supply systems.
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The application of machine learning methods in resource management makes it
possible to use such factors for planning the operating modes of water utilities. Forecasting
enables the optimization of pump operation schedules and the management of electric
load profiles, thereby reducing electricity costs through the use of storage reservoirs [7-9].
However, many input factors are not available in real time and can only be analyzed
retrospectively, which limits their use in operational forecasting. One of the ways to
generate operational features is the decomposition of time series into seasonal and calendar
components. In the authors’ previous research (for example, in the article «Identification of
Easily Accessible Urban Water Consumption Factors for Energy-Efficient Management of
Pumping Stations» [10]), the statistical significance of including such parameters as months
and days of the week in models was demonstrated. In the present study, the focus is placed
on investigating intra-daily variability in urban water consumption data, using one of the
largest water intakes in the Republic of Belarus as a case study.

The aim of the study is to develop and justify the effectiveness of a non-parametric
method for clustering daily water consumption profiles based on a modified DBSCAN
(Density-based spatial clustering of applications with noise) algorithm. Unlike the classical
approach, the method proposed in this article accounts for the uneven density of data
across different hours of the day and allows noise points to be reassigned to neighboring
clusters without specifying their number in advance. In practical application, the results
make it possible to determine the temporal boundaries of high and low water demand,
which can then be used for time-based labeling of data when training artificial intelligence
models. The training of predictive models, however, is not considered within the scope of
this article. The objectives of the work include: (1) analyzing modern methods of time series
clustering and their applications in water supply systems; (2) assessing the advantages and
limitations of existing approaches; (3) developing the modified DBSCAN algorithm and
describing the procedure for preprocessing daily profiles; and (4) testing the method on
real hourly water consumption data and interpreting the resulting demand patterns.

2. Related Work

Clustering methods for time series are widely applied in water consumption anal-
ysis tasks. The most common approaches remain classical partitioning algorithms and
hierarchical methods. Algorithms such as K-means, K-medoids, and their modifications
have become widespread due to their computational simplicity and interpretability [11,12].
However, their main limitation is the need to specify the number of clusters in advance.
Hierarchical methods make it possible to analyze the structure of data at different levels,
but they are highly sensitive to noise and require the selection of cut-off thresholds. Despite
these limitations, both classes of algorithms are actively used in studies of water systems.

For example, Prakaisak and Wongchaisuwat [13] employed agglomerative clustering
with preliminary extraction of statistical and spectral features, combined with the UMAP
(Uniform Manifold Approximation and Projection) algorithm for dimensionality reduction.
In the work of Guo et al. [14], three algorithms—K-means, hierarchical clustering, and
spectral clustering—-were compared for analyzing daily water consumption profiles. The
authors concluded that K-means provided the best values of the silhouette index and
Calinski-Harabasz score when identifying three characteristic regimes. At the same time,
seasonality turned out to be the decisive factor, whereas differences between weekdays and
weekends were less significant.

Recently, researchers have increasingly shifted their focus from methodological de-
velopments to applied tasks, particularly in the field of domestic water consumption.
Cominola et al. [15] showed that the use of high-resolution data from smart meters (time
intervals of seconds and minutes) makes it possible to classify individual consumption
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profiles (shower, laundry, irrigation), thereby improving forecast accuracy and anomaly
detection. Cheifetz et al. [16] applied Fourier decomposition and functional clustering to
typify households. In the studies of Candelieri [17] and Ioannou et al. [18], preliminary
clustering was used to improve forecasting accuracy and to obtain realistic load profiles. In
turn, Arsene et al. [19] implemented an IoT platform where the K-means algorithm enabled
classification of water consumption events (shower, sink, etc.) and the resulting labels were
used for leak prevention.

Despite the widespread use of classical algorithms, their effectiveness decreases when
working with complex and highly variable data structures. This has stimulated interest in
density-based methods, particularly the DBSCAN algorithm, which can identify clusters of
arbitrary shapes without the need to predefine their number. In this context, Mu et al. [20]
proposed a streaming version, Stream DBSCAN, for water quality data, where K-means
was used at the preliminary stage for node distribution. Song et al. [21] combined STL
(Seasonal-Trend decomposition based on Loess) decomposition with DBSCAN to clean on-
line hydromonitoring data from seasonal fluctuations and anomalies. Nasaruddin et al. [22]
applied the SMOTE-PCA-HDBSCAN strategy, increasing the sensitivity of detecting rare
consumption patterns by about 10%. Zhang et al. [23] integrated HDBSCAN (Hierarchical
Density-Based Spatial Clustering of Applications with Noise) with the generative network
WSGAIN to restore missing values in monitoring data.

Thus, despite the efficiency of density-based algorithms in detecting clusters without
predefined numbers, they remain sensitive to the choice of key parameters. Incorrect
parameter settings can lead to errors in data merging, especially in the presence of noise or
uneven density. As a result, most studies modify the base algorithms to suit the specifics of
the task, confirming the trend toward creating adaptive clustering models. At the same
time, existing research is mainly aimed either at identifying daily water consumption
profiles or at cleaning and classifying hydrological data, whereas the problem of identifying
operating regimes of resource-supplying systems, taking into account temporal structure
and energy consumption levels, remains insufficiently addressed. In the present study,
we propose an improved density-based clustering algorithm with automatic tuning of
the neighborhood radius and the minimum number of points to form a cluster, as well as
redistribution of noisy data among clusters.

3. Materials and Methods
3.1. Overview of the Study Area and Data Sources

The object of the study was the water supply system of the city of Gomel (Republic
of Belarus), which includes five main water intakes. As clustering parameters, hourly
water consumption data for each source for the year 2023 were used, digitized from the
logbooks of pump station machine rooms. In addition, electricity consumption data with
a 30 min resolution, recorded by the automated commercial electricity metering system,
were utilized. To form a consistent statistical database, the hourly water supply volumes
were converted into 30 min intervals. The distribution was carried out proportionally to the
share of electricity consumption in each half-hour interval relative to the total hourly value.
The conversion of data to a 30 min resolution was required due to the electricity billing
system in the Republic of Belarus, where accounting is based on half-hourly maximum
consumption values. All values were aggregated across the five water intakes. A fragment
of the resulting database structure is presented in Table 1.
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Table 1. Fragment of the structure of the analyzed data.
Date and Time Hour of Day Water Supply, m? Electricity, kWh
2023-01-01 00:30:00 0.50 1468.63 893.16
2023-01-01 01:00:00 0.75 1558.25 947.66
2023-01-01 01:30:00 1.00 1547.99 937.35

The analysis was carried out in the form of multivariate clustering using three features:
water supply, electricity consumption, and hour of the day. This approach made it possible
to simultaneously account for the volumetric (hydraulic) and energy characteristics of the
operating modes of water supply facilities, as well as their temporal structure. The use
of the temporal feature was necessary to identify typical intra-daily patterns and to label
them for further use. Electricity consumption was included to analyze the impact of these
modes on consumption levels in optimization tasks.

3.2. Methodological Foundations of Density Clustering

At the first stage of the study of water supply modes, the classical DBSCAN algo-
rithm (Density-Based Spatial Clustering of Applications with Noise) [24-26] is used. It
is described by two key parameters: the radius € and the minimum number of points m
(min Pts) [27-33]. The parameter ¢ defines the maximum distance between two points for
identifying neighborhood. This distance determines the size of the e-neighborhood of each
point in the dataset. For two points p and g in an n-dimensional space with coordinates
p=(p1,p2...,pn) and q = (91,492, ...,qn) the Euclidean distance d(p, q) is determined by
the formula:

-

d(p,q) = (pi —4i)?, 1)

-
Il
_

where p;, g;—i-th coordinate of points p and 4.

Thus, the e-neighborhood of point p, denoted as N;(p), includes all points q for which
the distance d(p, q) does not exceed ¢. Figure 1 illustrates the general principle of data
classification in the DBSCAN algorithm with a minimum number of points in a cluster
m=3.

vA

Figure 1. Identifying data points in 2D space.

Within the e-neighborhood of point p, three types of objects are distinguished: core,
border, and noise points. Core points have at least m neighbors (|N¢(p)| > m) and initiate
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cluster formation. Points g and r do not reach the threshold m (|N¢(q)| < m), but since
they are located within the e-neighborhood of a core point p, they are classified as border
points. Point s is isolated because its e-neighborhood lacks a sufficient number of neighbors
g € N¢(p), and therefore it is defined as noise.

Since the definition of neighborhood is based on calculating distances between points,
an important preparatory step was to bring the original features to a common scale. To
ensure data consistency, z-normalization was applied:

XK
z= Y 2)
where x—the initial value of the feature; y—the average value of the feature for the sample;
o—the standard deviation of the feature.
After standardization, all features have a mean value of 0 and a standard deviation of
1. Under these conditions, ¢ is usually within the range ¢ € [0, 1]; however, the specific
value depends on the data distribution and the dimensionality of the original feature space,
and, together with the parameter 1, becomes a task of optimization.

3.3. Optimization of Density Clustering Parameters

To improve the efficiency of DBSCAN density-based clustering and adapt it to dif-
ferent datasets, an algorithm was developed to optimize the minimum number of points
m and the neighborhood radius e. The procedure includes: (1) standardizing the data
using z-normalization; (2) calculating distances to the k nearest neighbors for each point;
(3) computing the average distances to the k-th neighbor across the dataset; (4) analyzing
the changes in these values to adaptively determine the minimum number of neighbors m
(min Pts); and (5) selecting the neighborhood radius ¢ as the median of the distances to the
m-th nearest neighbor. Figure 2 illustrates the steps of optimizing the key parameters of
density-based clustering.

STEP 1 STEP 2

Calculation of Computation of
distances to k-nearest average distances for
neighbors each &
v
STEP 3 STEP 4

Analysis of changes in S
average distances —
determination of m

Selection of radius €
(median distance to m)

Figure 2. Stages of optimization of the main parameters of density clustering.

Let us examine the optimization steps in more detail:
STEP 1: Calculation of distances to the nearest neighbors

For each point x; in the dataset, the distances to its k nearest neighbors are calculated.
The initial value of k is set to 2 and is gradually increased up to a value limited by the sample
size. Due to the computational cost of this operation on large datasets, it is reasonable
to set an upper bound for k. In the conducted experiments, this limit was set to k = 100,
which provided a sufficient margin for estimating data density. Next, for each point in the
dataset (e.g., x1, x2, ..., x;), the distances to all other points are computed. These distances
are then sorted in ascending order, and the first k values are selected. If d (x,-, x]-) denotes
the distance between points x;, Xj, the distance to the k-th nearest neighbor can be written
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as dy(x;). For example, if k = 3, then for point x;, the distance to its third nearest neighbor is
denoted as d3(x;).

STEP 2: Calculation of average distances to the k nearest neighbors

For each value of k, the average distance to the k-th nearest neighbor across all points is
calculated. This average value reflects the data density for different numbers of neighbors.
Accordingly, if dy = (x) denotes the distance from point x to its k-th nearest neighbor, then
the average distance for each k is defined as:

n

de = =) di(x;), 3)

niz
where 7 is the total number of points in the dataset.

STEP 3: Analysis of changes in average distances

At this stage, the changes in dj as k increases are analyzed. The critical point occurs
when increasing k leads to only a negligible increase in the average distance. In such cases,
the data density begins to stabilize. The search for the optimal value of k is determined by
the condition: _ _

D — di 1

<0, (4)
dr—1

where dy, d;_1—the average Euclidean distances to the k-th and (k-1)-th nearest neighbors
across all points at the current and previous steps, respectively; §—the threshold value that
defines how small the change in the average distance must be in order to stop increasing k.

In the conducted experiments, the criterion 6 was set to 0.01, which corresponded
to a threshold of no more than 1% change between two consecutive steps in k. This
approach allowed for adaptively determining the required minimum number of points
m for adequate clustering of the data, taking into account their internal structure and
density distribution.

STEP 4: Selection of the neighborhood radius ¢

After determining the minimum number of points m based on the distance analysis,
the optimal value of ¢ is calculated. For this purpose, the distance from each point to its
m (min Pts) nearest neighbor is computed. The median of these distances is then taken as
the optimal value of e. Thus, if dj,, (x) denotes the distance from point x to its m-th nearest
neighbor, then ¢ is defined as:

e = median(dy, (x1), dm(x2), .., dm(xn)). (5)

The median of these distances is used as the optimal value of ¢ because it represents
the typical distance at which a point can still be considered sufficiently close to a group of
other points. In its canonical form, optimization of density clustering parameters is aimed
at finding the number of points m used in the e-neighborhood that will ensure stable cluster
formation. The objective function here is defined as:

m* :min{m‘dm_dm_l < 9}, m =€ mmin, mmax (6)
dmfl
where m*—the optimal number of points within the boundaries #1,,;,, of and m14y; d,,—the
average distance to the m-th neighbor.
The search for the optimal value of m* is performed within a given maximum number
of nearest neighbors m < kyax.
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3.4. Redistribution of Noise Data to Nearby Clusters

As a result of nonparametric density-based clustering, a portion of the data points
is inevitably classified as noise, since they do not meet the requirement of the minimum
number of neighbors within the radius . Such data cannot be assigned to the formed
clusters; however, their automatic exclusion is not always the optimal solution. In some
cases, it is advisable to consider assigning noise points to the nearest cluster, which makes it
possible to preserve potentially valuable information. According to the proposed algorithm,
Figure 3 shows the correlation field of clustering by three features: water supply, electricity
consumption and hours of day.

1600 o
1400
1200
1000

800

Electricity consumption, kWh

600

1000 1500 2000 2500 3000
Water supply, m*

© Noise © Cluster 0 © Cluster]1 e Cluster2 o Cluster3 o Cluster4 o Cluster5 $ Centroids

Figure 3. Clustering results based on three parameters (water consumption, electricity consumption
and time of day) with noise point detection.

The resulting density groups correspond to five clusters, but around them, numerous
points classified as noise (shown in gray) form. Automatically removing such data results
in information loss and reduces the interpretability of the modes. In the proposed approach,
noise points are not excluded but rather redistributed to the nearest clusters according to
the following algorithm:

(1) Identification of noise data. At the first step, the indices of points classified as noise
are determined:
Lo = {ilLi = w}, @)

where L;—the cluster label of the i-th data point; w—the noise label.
(2) Selection of noise data. A subset of data corresponding to noise points is selected:

X = {xili € I}, 8

where x;—the value of the i-th data point identified as noise.

(3) Selection of core data. Core data belonging to clusters are separated from the data
identified as noise:

X ={xi|Li # w}. )

(4) Search for the nearest neighbors of each noise point. For each noise point x;, the
nearest point from the subset of clustered data X, is found:

j(i) = argmin d(x;, x;), (10)
jeXa
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where d (xl-, x]-)—the Euclidean distance between the noise point x; and the core point X;.
(5) Reassignment of labels. Each noise point is assigned the label of the nearest cluster:

Li =Ly foralli € I,. (11)

(6) Recalculation of cluster centroids. After redistributing the noise data, it becomes
necessary to update the centroids taking into account the newly assigned values:

1

= — foralll € L 12
|Sl|2xl orall/l € L, (12)

i€S;

€1

where S; = {i|L; = | }—the set of indices of points in cluster /; ¢;—is the centroid of cluster .

3.5. Modified Non-Parametric Clustering Algorithm

To address the task of identifying stable modes from multidimensional data, a modi-
fied density-based clustering algorithm was developed. This algorithm formed the basis of
the software implementation in Python-3.9.9. using the Streamlit framework [26]. Figure 4
shows the resulting block removal of the modified nonparametric density clustering algo-
rithm that was used in the analysis of the study.

Start of algorithm
Input data for
clustering

v

Data standardization using z-
normalization

v

Application of the k-nearest
neighbors algorithm for the initial
estimation of the minimum
number of points m

v

Calculation of the optimal
neighborhood radius € for the
computed m

Perform clustering for the
specified number of clusters N?,

Yes

Initialization of optimal

parameters: neighborhood radius Perform clustering based on the
& and minimum number of points optimal parameters &€ and m
m

v v

Iterative adjustment of € to
achieve the specified number of =]
clusters

Reassign noise points to the
nearest clusters

End of algorithm

Figure 4. Modified non-parametric density-based clustering algorithm.

The algorithm includes the following steps. First, the initial statistics are loaded and
structured. Next, the data is scaled using z-normalization. In the next step, the initial value
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of the parameter m is determined using the k-nearest neighbors’ method, after which the
optimal value of the neighborhood radius is determined.

After selecting the basic parameters m and ¢, the resulting number of clusters is
checked to ensure that it corresponds to the specified value N. This check is necessary
to exclude clusters formed by randomly combining groups that do not correspond to
real-world conditions. Thus, if the number of clusters does not correspond to the desired
value, the initial parameters m and ¢ are iteratively adjusted until a stable cluster structure
is achieved. In the final step, noisy cluster points that were not assigned to the nearest
groups in the first step are redistributed. The result of the algorithm is shown in Figure 5.

1600 e
1400
1200
1000

800

Electricity consumption, kWh

600

1000 1500 2000 2500 3000
Water supply, m?
o Noise ® Cluster 0 © Clusterl o Cluster2 o Cluster 3 e Cluster4 o Cluster5 $ Centroids

Figure 5. Results of clustering by three parameters (water consumption, electricity consumption and
time of day) with redistribution of noise points to the nearest clusters.

4. Results and Discussion

This section presents the results of applying a modified density clustering algorithm
to urban water supply system data. The primary objective is to label time regimes and
compare the results obtained using various feature selection strategies. Two approaches are
considered: (1) clustering based on time of day, water supply, and electricity consumption;
(2) an extended approach that includes the factor of average water pressure at the pumping
station outlet. These strategies will allow us to assess changes in cluster structure and test
their stability when adding additional hydraulic components.

4.1. Clustering Based on Time of Day and Water Supply and Electricity Consumption Parameters

For the analysis of water consumption patterns, half-hourly data for 2023 were used,
including the total water supply and electricity consumption from all sources in the city,
supplemented with a temporal factor (hour of the day). The optimal parameters of the
algorithm were determined using the k-nearest neighbors” method. Figure 6 shows the
dependence of the average distance to the k-th neighbor. It can be seen that at small
values of k the distance increases rapidly; however, after approximately k = 25, the curve
begins to level off, and stabilization is observed at k ~ 31. At this point, the search
algorithm terminates. As a result, the values ¢ = 0.12 and m = 31, were obtained, which
balanced the algorithm’s sensitivity to local data density and helped to avoid both excessive
fragmentation and over-merging of clusters.
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Figure 6. Variation in the average distance to the k-th neighbor of data points.

For clarity, the clustering results are presented in the form of a three-dimensional
projection of the data, where water supply, electricity consumption, and hours of the day
were used as coordinates (Figure 7). It is evident that the algorithm identified five clusters:
some were obtained by merging local dense groups, whereas two clusters exhibit significant
spread and cover a wide range of values. Such a structure confirms the presence of both
stable modes and generalized clusters that combine several sub-modes. In Figure 7, for
better clarity, the cluster centers are shown without noise points, but these points were
taken into account in the subsequent analysis of the modes.

1300
1200 4 * -,,.-~‘1
X X {

m 1100 x__a""' *
8
= 1000
a,
- X
"7¢ 900 A
z

200 ix

100

\ 2509
5 -
A0 2000 ((\'J

’S’ (o) UI"S AR 15, p \}QQ\N\

oFr by A < )
/?@ \'Q
Q’a ) r/ O0g Q\’b

Figure 7. Three-dimensional visualization of water and energy consumption modes depending on
the time of day using a modified DBSCAN method.

As a result of clustering, the data were divided into six groups. Of greatest interest
for analyzing water consumption patterns are only two of them—Cluster 0 and Cluster
1. Cluster 0 corresponds to a regime with a low level of water supply and electricity
consumption, whereas Cluster 1 reflects a high-demand regime characterized by increased
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system loads. These two clusters form the main structure of the analyzed data and define the
stable operating modes. The remaining clusters (2, 3, 4, and 5) occur much less frequently
and represent transitional states arising during limited time intervals. Their role is not in
forming key regimes but in describing transition processes, and therefore they have an
auxiliary significance when interpreting the results. Figure 8 presents a three-dimensional
distribution of the data, visualizing the frequency of occurrence of different regimes in

the coordinates of water supply and electricity consumption. This illustration clearly

demonstrates which system states are the most typical and which occur only occasionally.
160

Figure 8. Three-dimensional visualization of water consumption and electricity consumption regimes

To improve the robustness of the clustering results, extreme values were excluded from

the analysis. Data within the 5-95% percentile range were considered in the calculations.
Table 2 presents the main results of nonparametric clustering of the data.

Table 2. The main results of clustering modes based on the time of day and parameters of water

supply and electricity consumption.
Time Range Average Water Average Power o
Cluster (Within 5-95% Percentile) Supply, m3 Consumption, kW-h Data Share, %
0 00:00-06:30 1357 818 29.1
1 08:00-22:00 2355 1149 63.6
2 20:30-23:30 1791 925 2.3
3 21:00-23:00 2176 1064 29
4 06:30-08:00 2247 1169 0.7
5 06:30-08:30 2469 1231 1.3

In the baseline scenario, the analysis of the obtained clusters allowed us to identify
both stable system modes and transient states. The most significant are the modes of
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morning and evening water demand. The first cluster (00:00-06:30) is characterized by
the minimum value of water supply (on average 1357 m?) and electricity consumption
(818 kW-h), which accounts for 29.1% of all data. The second mode (08:00-22:00) coincides
with the active phase of the city’s daily activity and, on average, determines the water
supply of 2355 m? and electricity consumption of 1149 kW-h, with a share of observations
of 63.6%. The remaining groups have a significantly smaller specific weight and form
characteristic transient intervals. Clusters 4 and 5 (06:30-08:30) describe the morning load
peaks (on average up to 2469 m? of water and 1231 kW-h of electricity). Evening transient
states are included in clusters 2 and 3 (8:30 p.m.—11:30 p.m.) and include individual local
maxima. The proportion of transient states reflects changes in less than 6% of the data.

For clarity, the distribution of clusters by hour of day is presented in Figure 9, where
on the left is a heat map of the appearance of data in the time interval, and on the right is a
box plot illustrating the distribution of clusters relative to the time of day.

Baseline scenario: Heatmap of hourly distribution Baseline scenario: Boxplot of time distribution
700
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Figure 9. Distribution of clusters by hours of day in the baseline scenario (clustering by time of day
and parameters of water supply and electricity consumption).

The obtained results for identifying temporary clusters are consistent with the char-
acteristic patterns corresponding to the city’s actual daily activity. However, for a more
detailed assessment and identification of additional transient patterns, an additional pa-
rameter, the pressure at the pumping station outlet, will be included in the analysis.

4.2. Extended Clustering with the Addition of a Pressure Factor

To improve robustness against labeling the main operating modes, a hydraulic factor
accounting for the average pressure at the pumping station outlet was added to the model.
The mode analysis was performed using the same timeframe (half-hourly data for 2023),
and the feature space was expanded to four dimensions: water supply, electricity consump-
tion, hours of day, and pressure. Before clustering, all features were scaled to a single scale
(z-normalization), and the density clustering parameters (¢, m) were re-evaluated using the
k-nearest neighbors procedure discussed earlier. The clustering results are presented in
Table 3.

A comparison of the results of the basic (Table 2) and extended clustering (Table 3)
shows that the core of the daily water consumption structure has been preserved. In both
scenarios, two regimes remain key: the nighttime minimum (00:00-06:30) and the daytime
maximum (07:30-22:30), which together account for over 70% of the sample. However,
when pressure is added, a slight shift in the boundaries of the time intervals and the
emergence of additional transient regimes is observed. Thus, the nighttime cluster is
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divided into two groups (0 and 2), detailing the minimum regime, while the daytime
regime is formed by two clusters (1 and 3).

Table 3. Main results of extended clustering with the addition of the pressure factor.

Time Range Average Power

Cluster (Within 5-95% A‘éeragf. wager Consumption, P AveragliP Data Share, %
Percentile) upply, m kW-h ressure, kta
0 00:30-05:00 1254 796 324 5.7
1 12:00-22:00 2332 1149 391 11.5
2 00:00-06:30 1372 822 369 23.0
3 07:30-22:30 2361 1154 370 53.0
4 06:30-11:00 2251 1047 393 1.3
5 07:30-11:30 2355 1106 389 1.9
6 06:30-12:30 1966 915 370 14
7 21:30-23:30 1786 926 367 2.3

After adding hydraulic pressure, transient regimes, which were previously less pro-
nounced, are recorded. The morning intervals are described by clusters 4-6, distinguished
by the stratification of regimes across different time ranges (06:30-11:00, 07:30-11:30, and
06:30-12:30). The evening decline is classified into cluster 7 (9:30 p.m.—11:30 p.m.), which ac-
counts for a distinct time range of reduced water supply conditions in the water supply sys-
tem. The overall share of transient conditions is insignificant (approximately 6.9%), which
may reflect their likely dependence on random water supply characteristics. Figure 10
shows a heat map of the data distribution over time and a cluster span diagram.

Extended Scenario: Heatmap of hourly distribution Extended Scenario: Boxplot of time distribution
700 —
I $
600 20 l
- o
—‘7 ; ¢
L

W

< -

w

3

3
S

|

Number of points
Hours of the day (0-24)

-200

© -
- 100

w

£ 0
! ! ! ! ] ] -0
I 7773 =2®2c 248538 0 ! 2 3 4 5 6 7
°c o b d 4 b b S Cluster
— — —_— — — (3} (o}

Hour ranges

Figure 10. Distribution of clusters by hours of the day in the extended scenario (clustering by time of
day, and parameters of water supply, pressure and electricity consumption).

The obtained results can be used to formalize and label time regimes in applied analysis
and forecasting problems. In particular, the resulting clusters can serve as additional
features in constructing water consumption prediction models by refining the structure of
the time series.

4.3. Comparative Analysis of Clustering Results Using the K-Means Method and the Modified
DBSCAN Method

To verify the robustness of the results, extended clustering was compared with the
K-means method. Under comparable conditions, the number of clusters was pre-fixed at
k = 8, allowing the obtained results to be directly correlated with previously identified
modes based on water supply, pressure, power consumption, and time of day. Figure 11
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presents a three-dimensional visualization of the obtained results. It can be seen that,
unlike the proposed algorithm, the clarity of transient mode detection is reduced, with the
resulting clusters forming smooth, centered shapes without a clear distinction between
short morning and evening intervals. Furthermore, within the daily peak, an artificial

division into several closely related groups is observed, complicating data interpretation.

Electricity consumption, kWh

Cluster 0 Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6 Cluster 7 # Centroids

Figure 11. Three-dimensional visualization of water and energy consumption modes using the
K-means method.

The resulting clusters, using the K-means method, partially captured the nighttime
and daytime characteristics of consumption, but with significant limitations. Two clusters
divided the nighttime patterns into the 12:00-6:00 and 12:30-5:00 ranges, which partially
coincides with the proposed method. The daytime peak is also represented by several
overlapping clusters (8:30-21:30, 12:00-17:30, 18:00-22:30), which partially overlap and
form a smoothed structure. Morning intervals are also divided into two identical time
clusters (6:00-13:00), and transitional evening patterns are blurred into the 15:30-23:30 and
18:00-22:30 ranges. This demonstrates that K-means can reproduce the main trends of the
diurnal cycle but it is accompanied by excessive fragmentation and a decrease in the clarity
of the patterns. Table 4 presents the results of a comparison of clustering results using the
modified DBSCAN method and K-means.

The comparison showed that the K-means method is capable of capturing key trends,
but is inferior to the modified DBSCAN method in terms of interpretability. The main
drawback is the need to specify a predetermined number of clusters, which may not be
obvious given the heterogeneity of the regimes. This results in a smoothed and less realistic
data structure, in which the regimes are stratified into overlapping groups.
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Table 4. Comparison of clustering results using modified DBSCAN and K-means methods.

Mode

Modified DBSCAN K-Means Note

Nighttime minimum

Both methods record the night
minimum, the combined share
being about a quarter of
the sample.

00:30-05:00 (cluster 0, 5.7%) 00:00-06:00 (cluster 6,
and 00:00-06:30 (cluster 2, 21.6%) and 00:30-05:00
23.0%) (cluster 7, 5.7%)

Daytime maximum

In DBSCAN, the daily
08:30-21:30 (cluster 2, maximum consistently
14.2%), 12:00-17:30 (cluster ~ occupies ~65% of the sample,

1,15.1%), 18:00-22:30 while in K-means it is split into

07:30-22:30 (cluster 3,
53.0%) and 12:00-22:00
(cluster 1, 11.5%)

(cluster 0, 13.2%) several intersecting intervals
(a total of about 42%).
06:30-11:00 (cluster 4, In DBSCAN, transient moodes
A ] ) 06:00-13:00 (cluster 5, occupy a small share (<5%),
. .. 1.3%), 07:30-11:30 (cluster o o
Morning transitional o 6.4%), 06:30-13:00 (cluster ~ while in K-means these same
5, 1.9%), 06:30-12:30 o .
(cluster 6, 1.4%) 3,15.1%) intervals are extended and
T form up to 20% of the sample.
DBSCAN records a short
15:30-23:30 (cluster 4, evening decline (<3%),
Evening transitional 21:30-23:30 (cluster 7, 2.3%)  8.7%), 18:00-22:30 (cluster K-means distributes it into
0, 13.2%) long intervals with a share of

more than 20%.

5. Conclusions

The study confirmed the effectiveness of a modified DBSCAN algorithm for analyzing
intra-day water consumption patterns. The developed approach allowed us to identify
clusters of varying density and account for transient states, which is difficult to achieve
using traditional methods. An analysis of 2023 data revealed two main stable patterns:
high demand (07:30-22:30 and 12:00-22:00), accounting for 64.5% of the data, and low
demand (00:00-06:30), accounting for 28.7%. The remaining clusters, collectively accounting
for approximately 6.9% of the data, are transient in nature and reflect localized data
accumulations between these states, without significantly impacting the overall water
consumption structure.

The practical significance of these results lies in their potential application in schedul-
ing pumping stations and managing electrical loads. The following mode labeling is
proposed for the system’s operation: clusters 0 and 2 correspond to low demand (00:00-
06:30), clusters 4-6 reflect the morning transitional mode (06:30-12:30), clusters 1 and 3
correspond to high demand (07:30-22:30), and cluster 7 characterizes the evening transi-
tional mode (21:30-23:30). This classification allows for data labeling for testing predictive
models of water consumption modes.
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