университет имени П.О.Сухого», а также аспирантов, магистрантов и студентов.

8. Публикации авторов по теме исследования.

- 1. Соболев, Е.В. Многофакторный метод расчета электрического освещения с применением светодиодных источников света / Е.В Соболев, Е.Н. Подденежный // Вестн. Гом. гос. техн. ун-та им. П.О. Сухого. ~ 2010 . ~ 2010 . ~ 2010 . ~ 2010 . ~ 2010 .
- 2. Добродей, А.О. Проблемы трансформации излучения светодиодов, применяемых для систем освещения / А.О. Добродей, Е.В. Соболев, Е.Н. Подденежный // Материалы. Технологии. Инструменты. Т 15 (2010). №3. С. 69-74.
- 3. Соболев, Е.В. Моделирование светотехнических характеристик светодиодных модулей / Е.В Соболев, Е.Н. Подденежный // Міжнародний науково-технічний журнал «Світлотехніка та Електроенергетика» №2 (26). Харків. 2011. С. 13-18.
- 4. Соболев, Е.В. Моделирование светотехнических характеристик светодиодных модулей произвольной формы / Е.ВСоболев, Е.Н. Подденежный // Исследования и разработки в области машиностроения, энергетики и управления: сборник материалов XI МНТК студентов, магистрантов и аспирантов / ГГТУ им. П.О. Сухого. Гомель 2011. С. 75-82.
- 5. Соболев, Е.В. Компьютерное моделирование светотехнической части светодиодных осветительных установок / Е.В Соболев, Е.Н. Подденежный // Вестн. Гом. гос. техн. ун-та им. П.О. Сухого. \sim 2011. − № 2. − С. 61-67.
- 6. Светильник светодиодный: патент на полезную модель 7988 Респ. Беларусь, МПК F21S 8/00, H01J 63/00 / A.O. Добродей, Е.Н. Подденежный, А.А. Бойко, Е.В. Соболев; заявитель Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого». − № и 20110582; заявл. 18.07.11; опубл. 28.02.12 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. − 2012. − № 1. − С. 244.

Разработка новых типов наноструктурированных композиционных термоэлектрических материалов

1. Наименование проекта

Разработка новых типов наноструктурированных композиционных термоэлектрических материалов

2. Автор проекта

Подденежный Е.Н. - Гомельский государственный технический университет имени П.О. Сухого, доктор химич. наук, доцент

3. Актуальность исследования

Получение термоэлектричества становится все более жизненно важным экологически чистым способом преобразования энергии, особенно в условиях повышенного выделения тепла из большого количества локальных и распространенных источников (тепловая часть солнечной энергии, нагретые детали разного рода тепловых машин, автомобилей, котлов, печей, ядерных реакторов и т.п.).. Известно, что для практического применения показатель добротности используемого термоэлектрического материала ZT должен превышать 1. Такими материалами халькогенидные полупроводники (Ві₂Те₃, РbТе и их производные) и полупроводниковые сплавы Si-Ge ($ZT \approx 1$, при T = 800 °C). У халькогенидов имеется ряд недостатков: вредность для здоровья при изготовлении, высокая стоимость, экологическая опасность, низкая термостойкость в воздушной среде. Сплавы системы Si-Ge являются дорогостоящими материалами, сложны в изготовлении. Оксидные термоэлектрические материалы привлекательны в связи с их неоспоримыми

преимуществами перед халькогенидными материалами. Одним из перспективных направлений является исследования керамических материалов ZnO-M_xO_v(M – металл), направленных на задачу снижения электрического сопротивления, поиск новых наноразмерных фаз на границе раздела частиц ZnO в керамическомтеле, увеличивающих фононное рассеяние и приводящих к снижению теплопроводности (Al₂O₃, Ga₂O₃, In₂O₃). Подобными объектами, резко снижающими теплопроводность могут быть также искусственно формируемые в объеме керамического тела замкнутые нанопоры, равномерно распределенные между кристаллитами. Другим прорывным направлением в получении термоэлектрических материалов с высокой добротностью является создание объемных двухфазных композитов, в которых высокопроводящие полупроводниковые микрочастицы распределены равномерно объеме диэлектрической матрицы с низкой теплопроводностью и имеющие между собой наноразмерные зоны контакта. Термоэлектрическая эффективность такой структуры довольно велика и может достигать значений 2.5-4.

4. Состояние исследований в данной области в республике и за рубежом

В Республике Беларусь научные и конструкторско-технологические работы с оксидными термоэлектрическими материалами п-типа на основе оксида цинка и оксидов марганца не ведутся, исследованиями термоэлектриков р-типа (кобальтиты и перовскиты) проводятся в БГТУ и НПЦ НАНБ по материаловедению. Разработка и освоение производства высокоэффективных термоэлектрических оксидных материалов п-типа на основе оксида цинка в РБ, вместе с имеющимся заделом по термоэлектрикам р-типа позволит сформировать новое направление в производстве современных термоэлектрических приборов для малой энергетики, предназначенных для их широкого применения в промышленности и быту, создать новое экспортоориентируемое направление в РБ в приборостроении и энергетике. Поиски оксидных фаз п-типа с высокой добротностью в лабораториях Японии и США привели к разработке керамических материалов на основе оксида цинка с $ZT \approx 0.65$, что позволило создать первые экспериментальные термогенераторы, изготовленные полностью на оксидных термоэлектрических материалах. Оптимистичными в данном направлении являются прогнозы резкого увеличения термоэлектрической добротности, коэффициентов основанные расчете оценке кинетических на наноструктурированного материала «микрочастицы полупроводника наноконтактами-диэлектрическая фаза низкой теплопроводностью» предположении, что основную роль в переносе играет квантовое туннелирование между наночастицами, а фононная теплопроводность через барьерные слои отсутствует (работы украинских исследователей).

5. Цель и задачи, которые будут решены при выполнении исследований

- 1. Цель проекта разработка гаммы новых композиционных материалов на основеоксидных систем ZnO:Al, ZnO:Ga, ZnO/SiO₂, MnO₂, MnO₂/SiO₂, обладающих высоким коэффициентом Зеебека, высокой электропроводностью и низкой теплопроводностью, обеспеченной низкоразмерностью фаз и/или управляемым введением замкнутых микро- и нанопор, равномерно распределенных в объеме керамического тела и пригодных для изготовления эффективных элементов термоэлектрических преобразователей. Залачи:
- 1 разработка составов и методики управляемого синтеза наноструктурированных порошков и керамики на основе оксида цинка и диоксида марганца;
- 2 изучение влияния переменных параметров процессов формования, спекания и легирования керамических заготовок на структурные, электрофизические и теплофизические характеристики;
- 3 изучение процессов формирования композитов систем ZnO/SiO_2 и MnO_2/SiO_2 , обладающих одновременно высокой электропроводностью и низкой

теплопроводностью; 4 — разработка технологических процессов формирования керамики и нанокомпозитов на основе оксидных керамических систем, получение и испытания образцов, оценка пригодности полученных материалов для изготовления эффективных элементов термоэлектрических преобразователей, а также объемных мишеней для напыления тонких электропроводных и термоэлектрических пленок.

6. Научная новизна и оригинальность

В результате выполнения проекта будут разработаны новые составы и оригинальные методики управляемого синтеза наноструктурированных порошков и керамики на основе оксида цинка и диоксида марганца. Будет изучено влияние переменных параметров процессов формования, спекания и легирования керамических заготовок на структурные, электрофизические и теплофизические характеристики получаемых керамических высокоплотных и высокопористых материалов. Будут изучены процессы формирования методами порошковой металлургии и коллоидной химии композитов MnO_2/SiO_2 систем ZnO/SiO₂ обладающих одновременно высокой электропроводностью низкой теплопроводностью. И Будут разработаны технологические процессы формирования керамики и нанокомпозитов на основе оксидных керамических систем, получены и испытаны экспериментальные образцы, пригодности полученных материалов для произведена оценка изготовления эффективных элементов термоэлектрических преобразователей.

7. Научный потенциал и материально-техническая база

В НИЛ технической керамики и наноматериалов УО «Гомельский технический университет им. П.О.Сухого» (НИЛ ТКН) с 1998 г. проводятся работы по созданию и исследованию новых прогрессивных материалов и изделий на основе пористой и монолитной керамики, композитов, в том числе, наноструктурированных порошков и стеклокристаллических композиционных материалов. В НИЛ технической керамики и наноматериалов имеется соответствующая научно-техническая база для проведения работ по формованию и синтезу керамических и композиционных материалов, а также исследованию характеристик промежуточных продуктов и получаемых материалов, а именно:

технологическое оборудование для подготовки и диспергирования исходных порошков для получения композиционных материалов (УЗ-диспергатор, планетарная высокоскоростная мельница, шаровые и пружинные мельницы, механические вибросита и др.);

сушильные шкафы и муфельные и трубчатые печи, позволяющие проводить термообработку в широком диапазоне температур (до $1800~^{0}$ C) и в различных газовых средах;

ротационный вискозиметр Reotest 2.1 (Германия) для исследования реологии шликеров и коллоидных растворов;

дифрактометр рентгеновский ДРОН-7 для фазового и структурного анализа кристаллических и стеклокристаллических материалов с программным обеспечением;

лазерный спектральный анализатор ЛСА - 1 для определения элементного состава материалов с чувствительностью до 10^{-5} мас.%;

атомно-силовой микроскоп NT-206 для исследования фазового состава композитов и структуры наноразмерных составляющих с программным обеспечением.

измеритель теплопроводности ИТП-МГ4«100» по ГОСТ 7076

Изучение теплофизических, физико-механических характеристик получаемых материалов(прочность, твердость, микротвердость) планируется проводить испытания лабораториях кафедр университета, термоэлектрических a И электрофизических характеристик осуществлять совместно с сотрудниками кафедры энергофизики физического факультета БГУ (проф. А.К.Федотов).

Предполагаемые исполнители проекта: 1 докт.хим.наук, 1 канд.физ.-мат.наук, 1 канд.техн.наук, 2 сотр.без степени, 1 аспирант.

8. Публикации авторов по теме исследования.

- 1. Алексеенко А.А., Бойко А.А., Подденежный Е.Н. Функциональные материалы на основе диоксида кремния, получаемые золь-гель методом (монография). Гомель: ГГТУ им. П.О. Сухого, 2008. 183с.
- 2. Химич Н.Н., Здравков А.В., Коптелова Н.А., Подденежный Е. Н., Бойко А.А. Золь-гель синтез компактных наногибридных структур на основе кремнегелей. //Физика и химия стекла (Россия)— 2009 –Т.35, №2. –С. 234-246.
- 3. Подденежный, Е.Н. Синтез наноструктурированной люминесцирующей керамики YAG: Се с использованием кремнеземсодержащих легирующих систем / Е.Н. Подденежный, А.О. Добродей, А.А. Бойко, Е.Ф. Кудина // Материалы. Технологии. Инструменты. 2009— Т. 14, № 3. С. 101—104
- 4. Патент РБ № 14776, МПК С 01G 9/02. Способ получения наноразмерного порошка оксида цинка. Судник Л.В., Подденежный Е.Н., Бойко А.А. авторы; заявитель Государственное научное учреждение «Институт порошковой металлургии Национальной академии наук Беларуси» и Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», по заявке на изобретение РБ № 20091446, заявл. 14.10.2009; опубл. 30.08.2011.

Технологическая регламентация направленного структурооборазования деталей машин для увеличения их наработки на отказ по критерию контактной выносливости

1. Наименование проекта

Технологическая регламентация направленного структурооборазования деталей машин для увеличения их наработки на отказ по критерию контактной выносливости

2. Автор проекта

Степанкин Игорь Николаевич, Гомельский государственный технический университет имени П.О. Сухого, заведующий кафедрой «Материаловедение в машиностроении», к.т.н., доцент

3. Актуальность исследования

Снижение себестоимости деталей машин и технологической оснастки, обеспечиваемое за счет максимального использования преимуществ их ресурсного проектирования, является одной из важнейших задач развития современного машиностроительного комплекса.

Применение высоколегированных сталей для изготовления ответственных деталей диктуется требованиями к износоустойчивости, прочности и усталостной долговечности материалов. Спектр эксплуатационных факторов, традиционно учитываемый при выборе материала детали, зачастую приводит к завышению коэффициента запаса надежности по комплексу эксплуатационных характеристик материала, а выбор материала делается в пользу сталей с улучшенными эксплуатационными характеристиками, которым сопутствует высокая стоимость материала. Затраты связанные с формированием специфических свойств сопряженных поверхностей деталей увеличиваются в соответствии со стоимостью всего объема детали.

Изменение экономических условий хозяйствования требующее гибкой и своевременной