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Abstract: The rapid advancement in computer vision and deep learning has paved the way for innovative
applications in food recognition. This mini report presents a comprehensive approach to developing a Fruits and
Vegetable Recognition System using Convolutional Neural Networks (CNNs). The system not only identifies various
fruits and vegetables but also provides users with recipe suggestions based on the recognized items. The integration
of image processing techniques with a user-friendly interface enhances the cooking experience, promoting healthier
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With the increasing emphasis on healthy eating and nutrition, the demand for effective food
recognition systems has grown. Recognizing fruits and vegetables can facilitate meal planning,
encourage cooking, and promote the consumption of fresh produce. This paper outlines the
development of a CNN-based system that identifies fruits and vegetables from images and offers
recipe suggestions, thereby enhancing user engagement and culinary creativity.

Results and discussion

A diverse dataset of images of fruits and vegetables was collected from various sources,
including online repositories and personal photographs [1-3]. The dataset comprises thousands of
labeled images, covering a wide range of produce, ensuring robust model training. Before feeding
the images into the CNN, several preprocessing steps were performed:

e Resizing: All images were resized to a uniform dimension (e.g., 128x128 pixels) to ensure

consistency.

e Normalization: Pixel values were normalized to the range [0, 1] to facilitate faster

convergence during training.

e Augmentation: Data augmentation techniques, such as rotation, flipping, and zooming,

were applied to increase dataset diversity and reduce overfitting.

A custom CNN architecture was designed with the following layers:

e Convolutional Layers: Multiple convolutional layers with ReL U activation functions to

extract features from images.

e Pooling Layers: Max pooling layers to down-sample the feature maps, reducing

dimensionality.

e Fully Connected Layers: Dense layers for classification, with a softmax activation

function in the output layer to predict the probabilities of each class.

The model was trained using a portion of the dataset, with 80% allocated for training and 20%
for validation. The Adam optimizer was employed, and the categorical cross-entropy loss function
was used to evaluate model performance. The training process involved multiple epochs, with early
stopping implemented to prevent overfitting. Upon successful identification of fruits and
vegetables, the system queries a recipe database to suggest relevant recipes. The database includes
a variety of recipes categorized by ingredients. The suggestions are generated based on the

recognized items, allowing users to explore different culinary options.
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Fig 1- a. Image of the input dataset, b. Program outputs and suggestions
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The CNN achieved acommendable accuracy of over 90% on the validation dataset. Confusion
matrices were analyzed to evaluate the model’s performance across different classes, revealing that
most fruits and vegetables were correctly identified, with a few exceptions attributed to similarities
in appearance. A user-friendly interface was developed, allowing users to upload images or use
their device’s camera for real-time recognition. The interface displays the identified produce along
with suggested recipes, enhancing the user experience. The recipe suggestion engine successfully
provided relevant options based on the recognized items. For example, if the system identifies
tomatoes, it suggests recipes such as "Tomato Basil Pasta” or "Caprese Salad," promoting the use
of fresh ingredients in cooking. The Fruits and Vegetable Recognition System demonstrates the
effectiveness of CNNs in food identification tasks. The integration of a recipe suggestion feature
adds significant value, encouraging users to engage with their food choices actively. The system
can be further enhanced by incorporating additional features, such as nutritional information and
cooking tips, to enrich the user experience. Future developments may include expanding the dataset
to encompass a broader range of produce and improving the recipe database with user-generated
content. Additionally, exploring transfer learning techniques could optimize model performance
with fewer data requirements.

This mini report presents a novel Fruits and Vegetable Recognition System utilizing CNNs,
coupled with recipe suggestions to inspire healthier cooking habits. The successful implementation
of this system highlights the potential of Al and machine learning in the culinary domain, making
it easier for users to make informed food choices and explore cooking creatively.
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