= - 0
P A S b e LN AL A 0 el
= o
Abstract: Every year, millions of dollars are lost due to plant diseases. these diseases can lead to reduced yields and sometimes
complete crop failure, the agricultural landscape is facing serious challenges. Plant diseases are on the rise, threatening
global food security. Traditional methods are often slow and costly, leaving farmers vulnerable to crop losses. therefor
Farmers need efficient ways to identify and manage these issues before they escalate. However, advances in artificial

intelligence (Al) provide a fresh approach to address these critical challenges.
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In this report used basic photos of the leaves of both healthy and diseased plants to
train and convolutional neural networks (CNNSs) architectures in order to create an
automated method for detecting and diagnosing plant diseases. The one that the
supplied dataset included photos taken under actual field growing circumstances as
well as experimental (laboratory) setups. Compared to shallow techniques, which learn
from fewer data but are crop-specific, the suggested deep learning approach could
discover more accuracy results [1, 2].

Training of the models was performed with the use of an open database more than
80,000 images, containing 20 different plants in a set of 54 distinct classes of [plant,
disease] combinations, including healthy plants. Several model architectures were
trained, with the best performance reaching a 98.50% success rate in identifying the
corresponding [plant, disease] combination (or healthy plant). The significantly high
success rate makes the model a very useful advisory or early warning tool, and an
approach that could be further expanded to support an integrated plant disease
identification system to operate in real cultivation conditions, even though the
developed system has a really high success rate, it is still far from being a general tool
that may be applied in real-world situations for a number of reasons. The incorporation
of 54 distinct to the best of our knowledge, the largest plant disease detection
assignment currently being addressed with deep learning approaches consists of classes
of [plant, illness] pairings of 20 distinct plant species. The next near future step, though,
should be to expand the current database to include a greater range of plant species and
illnesses. This can be a time- consuming and difficult procedure in a number of ways.
Another crucial point that needs to be mentioned and to be addressed is that the testing
dataset, which was utilized to evaluate the models, was a component of the training
dataset. This is a standard procedure in machine learning models, but testing data that
would come from real-world scenarios should demonstrate the true worth of the created
system, particularly in terms of its applicability. distinct databases and/or sources.
Some early experiments in that direction, using a small but sufficient amount of data,
revealed a significant decrease in model performance, ranging from 25 — 30% percent,
depending on the data source. This is comparable to comparable performances that
have been reported, which showed a model accuracy of 30 % percent in such data for
a problem involving 35 plant disease classes. A far greater range of training data from
several sources covering various regions, cultivation circumstances, and image capture
modes and sets to be gathered in order to make progress in that direction. A greater
range of training data from several sources covering various regions, cultivation
circumstances, and picture capture modes and sets to be gathered in order to make
progress in that direction. Given the enormous potential of the suggested deep learning
technique, it is a matter of quantity and quality of the data that is now accessible to
enhance the system, make it more robust in actual cultivation circumstances, and
expand its scope (in terms of plant species and illnesses that may be diagnosed).

This study specialized customized deep learning models based on certain
convolutional neural network designs to identify plant illnesses from straightforward
photos of healthy leaves. or ill plants [3]. a publicly accessible collection of 80,000
photos that were collected in actual agriculture fields as well as in lab settings was used
to train the models. The information includes some healthy plants as well as 20 plant
species in 54 different classes of [plant, illness] pairings.
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