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Abstract 
We apply analytic perturbation theory to the QCD analysis of 

the xF3 structure function data of the CCFR collaboration. We 
use a different approaches for the leading order Q2 evolution of 
xF3 structure function and compare the extracted values of the 
parameter A and the shape of the higher twist contribution. Our 
consideration is based on the Jacobi polynomials expansion method 
of the unpolarized structure function. The analysis shows that the 
analytic approach provides a reasonable results in the leading order 
QCD analysis. 

1 lntrod uction 

The data on xF3 structure function [1] provides a possibility for the pre­
cise test of the perturbative QCD predictions for the Q2 evolution of this 
structure function. The analysis of xF3 data simplified because one do not 
need to parameterize gluon and see quark contributions and could param­
eterize the shape of the xF3 structure function itself at some value Q6. 
For the kinematics region of this data Q2 ;::: 1.3 GeV2 the higher twists 
contribution (HT) to the structure function should be taken into account. 
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This allows to study from the above-mentioned data both the perturbative 
part and HT correction related to each other. Here, we'll focus our atten­
tion on the interplay of the different approaches to the strong coupling 
Q2-behavior and the x-dependence of the HT contribution. 

In our investigation we apply the analytic approach in QCD proposed 
by Shirkov and Solovtsov [2] the so-called analytic perturbation theory 
(APT) (see also Refs. [3, 4] ) .  This method takes into account basic prin­
ciples of local quantum field theory which in the simplest cases is reflected 
in the form of Q2-analyticity of the Kallen-Lehmann type. The key point 
of APT constructions-the analytic properties of some functions (the two­
point correlator of the quark currents, the moments of the structure func­
tions and so on) . A overview of the analytic approach to QCD can be 
found in Ref. [5] . In the framework of the APT in contrast to the infrared 
behavior of the perturbative (PT) running coupling, the analytic coupling 
has no unphysical singularities. At low Q2 scales, instead of a rapidly 
changing Q2 evolution as occurs in the PT case, the APT approach leads 
to a slowly changing functions (see, e.g. , Refs. [6, 7] ) .  In the asymptotic 
region of large Q2 the APT and the PT approaches coincide. It should 
be noted that the moments of the structure functions should be analytic 
functions in the complex Q2 plane with a cut along the negative real axis 
(see Ref. [8] for more details) , the ordinary PT description violates an­
alytic properties due to the unphysical singularities of PT coupling. On 
the other hand, the APT support these analytic properties. For fullness, 
in our analysis, we consider also the recent variant of the model for the 
freezing-like behaviour coupling - "massive analytic perturbative QCD" 
(MPT) [9] (see Ref. [10, 1 1] for a discussion) . 

In Refs. [12, 13] was made further development of the APT method -
the generalization for the fractional powers of the running coupling which 
called the Fractional Analytic Perturbation Theory (FAPT) (see Ref. [14] 
as review). The FAPT technique was applied to analyze the F2 structure function behavior at small x-values [11 , 15] , to analyze the low energy 
data on nucleon spin sum rules rf,n(Q2) [16] , to calculate binding ener­
gies and masses of quarkonia [17] .  Here, we continue applications of the 
APT /FAPT approach executing the data on xF3 structure function and 
investigating how the analytic approach works in this case by comparison 
with the standard PT analysis. 
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2 The Method of the QCD analysis 

In our analysis we'll follow the well known approach based on the Jacobi 
polynomial expansion of structure functions. This method of solution of 
the DGLAP equation was proposed in Ref. [18] and developed both for un­
polarized [ 19] and polarized cases [20] . The main formula of this method 
allows approximate reconstruction of the structure function through a fi­
nite number of Mellin moments of the structure function 

h(x) Nmax n 
xF["max (x, Q2) = Q2 + x" (l - x)/3 � 8�'/3 (x) _t; c)n) (a, ;3)Mj+2 ( Q2) . 

( 1) 
The Q2-evolution of the moments MN(Q2) in the leading order (LO) per­
turbative QCD is defined by 

Here a8 (Q2) is the QCD running coupling, ry(o),N are the nonsinglet 
leading order anomalous dimensions, /30 = 1 1 - 2n f / 3 is the first coefficient 
of the renormalization group ;3-function, n1 denotes the number of active 
flavors. 

Unknown coefficients M�CD (Q5) in Eq. (2) could be parameterized as 
the Mellin moments of some function: 

M�CD (N, Q5) = l dxxN-2 Axa(l  - x)b ( l  + "( x),  N = 2, 3, . . .  . (3) 

The shape of the function h(x) as well as parameters A, a, b, ry, and 
AqcD are found by fitting the experimental data on the xF3 (x, Q2) struc­
ture function [1] . Detailed description of the fitting procedure could be 
found in Ref. [21] . The terms h(x)/Q2 considered as pure phenomeno­
logical. The target mass corrections are taken into account to the order 
o( M�uci/ Q

4) · 

3 Analytic approach in QCD 

The APT method gives the possibility of combining the renormalization 
group resummation with correct analytic properties in Q2-variable some 
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physical quantities and provides also a well-defined algorithm for calculat­
ing higher-loop corrections [4] . As the difference between the APT and PT 
running couplings becomes significant at low Q2-scales (see, e.g. , Fig. 1 in 
Ref. [6]) that stimulates applications of the analytic approach for a new 
analysis [5] especially after the generalization of the APT on the fractional 
powers of the running coupling (see Refs. [14, 22, 23] for further details) . 

In the framework of the analytic approach the following modification 
in the standard PT expression (2) for the Q2-evolution of the moments 
MN(Q2) is required: [o:PT(Q2)t =? Av (Q2) . It transforms Eq. (2) as 
follows1 

A (Q2) (O),N 
MQcn(Q2) = 

v MQcn(Q2) = _r _ N Av( Q5) N ° ' v - 2/3o ' (4) 

where analytic function Av is derived from the spectral representation 
and correspond to the discontinuity of the v-th power of the PT running 
coupling 

(5) 

Note that the function A1 ( Q2) defines the APT running coupling: 
0:APT(Q2) = A1 (Q2) . Mathematical tool for numerical calculations of Av 
for any v > 0 up to four-loop order in the perturbative running coupling 
is given in Ref. [24] . 

The 'normalized' analytic function Av = /3oAv / ( 47r) in the leading 
order (LO) has rather simple form (see, e.g. , [14]) and can be writhen as 

_ALO(Q2) = [-LO (Q2)] v _ Lis(t) v aPT f(v) ' 

oo tk A2 Li8 (t) = L ks , t = Q2 , o = 1 - v, 
k=l 

where 'normalized' PT running coupling a�? (Q2) = f30o:�?(Q2)/(47r) 

(6) 

1/ [ln(Q2/A2)] and Lis is the polylogarithm function. For v = 1 the ex­
pression (6) leads to well-known one-loop APT result [2] 

(7) 

1Beyond LO see Ref. [ll] and discussion therein. 
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Figure 1: The behavior of the parameter APT vs. AAPT in LO for different 
values of v at Q6 = 3 GeV2. 

One could see, that at large Q2 the second term in the r.h.s. of (7) is 
negative. It was confirmed qualitatively in the phenomenological analysis 
of the xF3 data in Ref. [25] . 

It should be stressed that values of the QCD scale parameter A are 
different in PT and APT approaches. In order to illustrate this, in Fig. 1 ,  
we present the behavior following from the condition [a�� (Q6, APT)r = 

A�0(Q6, AAPT) of the parameter APT vs. AAPT for different values of v .  
In short, one-loop modification of the QCD coupling within the MPT 

approach, which is considered by us further corresponds to the replacement 
of the logarithm in the a�� ( Q2) to the "long logarithm" with the "effective 
gluonic mass" m91 :  ln(Q2/A2) =} ln[(Q2 + m�1)/A2] (see, Refs. [9, 26] ) .2 
4 Numerical analysis of experimental data 

The results of LO QCD fit in different approaches are presented in Table 
1 and Figs. 2-5. Both cases h(x)- free and h(x) = 0 are considered for 
Q6 = 3 GeV2, Q2 > 1.3 GeV2 , n1 = 4, and NMax = 12. In order to 
reconstruct the x-shape of the HT contribution we have parameterized 
h(x) in the number of points x; = 0.015, 0.045,  0.080, 0. 125 , 0 . 175, 0 .225, 

2The parameter of "effective mass" serves as an infrared regulator and typically of 
the order m91 = 500 ± 200 MeV (see, e.g . ,  Ref. [27] ) .  
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Table 1 :  The results for the QCD leading order fit (with TMC) of xF3 
data [l] (Q6 = 3 GeV2, Q2 > 1 GeV2, n1 = 4, and NMax = 12) . 

h(x) = 0 h(x )-free I 
Approach A (MeV) I 

PT 291 ± 36 I 
APT 215 ± 39 I MPT 299 ± 38 I "naive" analyt. 417 ± 83 

x" d.f. 
1 .35 
1 .42 
1 .35 
1 .34 

A (MeV) 

363 ± 170 
350 ± 145 
351 ± 128 
412 ± 240 

x" d.f. 
0.984 
0.980 
0.985 
0.980 

0.275, 0.35, 0.45, 0.55, 0.65 - one per x-bin. The values of A, a, b, /, x; 
and A are consider as a free parameter. 

As can be seen from the Table 1, the values of A's for the case h(x) = 0 
are smaller in comparison with the case of nonzero HT contribution. The 
difference of the A's values for the APT and PT are smaller in the analysis 
with HT contribution: (APT - AAPT ) h(x)=D > (APT - AAPT )h(x)J"O· The LO 
h(x) = 0 results for A's values are consistent within errors. If one add 
the HT contribution, the values of parameter A and their errors are higher 
than h(x) = 0 case. For illustrative purposes we present in the last line of 
the Table 1 the result corresponding to the use in the analysis of "naive 
analytization" when the perturbative coupling is replaced by the analytic 
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Figure 2: Comparison of 
parametrizations of xF3 in 
PT, APT and MPT approaches 
for h(x) = 0. 
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Figure 3: Comparison of 
parametrizations of xF3 in 
PT, APT and MPT approaches 
for h(x) =f. 0. 
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Figure 4: Higher twist contribution 
resulting from LO QCD analysis of 
xF3 data [l] for PT and APT ap­
proaches. 
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Figure 5: Higher twist contribution 
resulting from LO QCD analysis of 
xF3 data [l] in PT and MPT ap­
proaches. 

coupling: etPT(Q2) --+  O'.APT(Q2) (see Ref. [12] and references therein) . 
Figures 2-3 show the xF3-shape obtained in the APT, PT and MPT 

approaches without taken into account the HT term (Fig. 2) and with the 
HT (Fig. 3) . In both cases, the result for the APT approach slightly higher 
than for the PT and MPT ones for small x and less for small x. 

Figures 4-5 demonstrate HT contributions. From Fig. 4 one can see, 
that for x > 0.3 we obtained hAPT(x) > hPT(x) . This inequality is in 
qualitative agreement with the result obtained in LO for the shape of the 
HT contribution for non-singlet part of F2 structure function (see Table 3 
in Ref. [ ll ] ) .  Opposite inequality we obtain for small values x < 0.2 : 
hAPT(x) < hPT(x). Figure 5 shows that the central values of hPT(x) and 
hMPT(x) are very close to each other. 

5 Conclusion 

We performed the QCD analysis of xF3 structure function data based on 
the analytic approach. It should be noted that the wide kinematic region 
experimental points gave us the possibility to analyze HT contributions of 
both small and relatively large x and to compare APT and MPT results 
to the PT one. We have found that in the examined region Q2 > 1 Ge V2 
the values of A obtained in PT, APT and MPT approaches are close each 
other. While the "naive analytization" approach leads to the rather large 
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A's value. The shape of HT contributions are in quantitative agreement 
with the results of the previous analysis of xF3 structure function data. We 
made the first step - LO analysis which showed that the analytic approach 
gives reasonable results. It is important to extend the analysis to higher 
orders and applied it to the structure function data at low Q2 region. 
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