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The Adler D-function which appears in the process of the ete™ annihilation into hadrons
is of interest from the point of view of quark-hadron duality, as this function turned out
to be a smooth function with no traces of a resonance structure which is observed for

the function R(s), the normalized cross-section for the process of ete™

annihilation into

hadrons. We consider various physical quantities and functions generated by R(s) and obtain
good agreement between our results and experimental data down to the lowest energy scale.
We found that the reason of such consent is a consequence of quark-hadron duality, which

connects the R(s) and the D-function.
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1. Introduction

To compare theoretical results and
experimental data one often uses the concept
of quark-hadron duality which establishes a
bridge between quarks and gluons, a language
of theoreticians, and real measurements with
hadrons performed by experimentalists. The
idea of quark-hadron duality was formulated in
the paper of Poggio, Quinn, and Weinberg |[1]
as follows: Inclusive hadronic cross sections,
once they are appropriately averaged over an
energy interval, must approximately coincide
with the corresponding quantities derived from
the quark-gluon picture.

To check direct of the
theory without using model assumptions, it
is important to connect measured quantities
with the “simplest" theoretical objects. Some
single-argument functions, which include the
Adler D-function [2|, directly related to the
experimentally measured quantities can play the
role of these objects. Let us remind that the
cross-section for the process of ete™ annihilation
into hadrons, or the Drell ratio R(s), is defined
for the timelike momentum transfer, and at

consequences
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low energy scale has a resonance structure
which is difficult to describe without model
considerations.

In this report, we concentrate on the D-
function, corresponding to the e*e™ annihilation
and quantities which are expressed through
the Drell ratio R(s) integrated with some
known function: the hadronic contribution to
the anomalous magnetic moment of the lepton
(in the leading order in electromagnetic coupling
constant)

1 2 Tds
a = g - /S R(s), (1)
0

Il = p, e, 7, and K;(s) is a known
QED kernel function, the strong interaction
contribution to the running fine structure
constant at Mz, and so on. By definition, all these
quantities include the infrared region as a part
of the interval of integration and, therefore, they
cannot be directly calculated within perturbative
QCD. We use the approach which is based on
the nonperturbative expansion method called the
variational perturbation theory (VPT) |3, 4]. In
the case of QCD the VPT approach leads to
a new small expansion parameter. Even going
into the infrared region of small momenta, where

where
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the perturbative coupling becomes large, the
nonperturbative expansion parameter remains
small and the approach holds valid.

2. Interrelation of R(s) and D(Q?)

The Adler D-function is determined in the
Euclidean region (for a spacelike momentum
transfer), Q? = —¢* > 0, and is a smooth function
with no traces of a resonance structure. Figure 1
shows the D-function behavior. The solid curve
corresponds the VPT result for five active quarks.
The experimental curve is taken from Ref. [5].

FIG. 1. The Adler function for eTe~ annihilation into
hadrons.

By using the dispersion relation it is possible
to express the Adler function through the R(s)
and to see that the D-function has to be an
analytic function in the complex Q?-plane with a
cut along the negative real axis. Analyzing various
physical quantities and functions generated by
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FIG. 2: The integration contour in Eq. (4).

R(s) within the nonperturbative VPT-method we
obtained that the method maintains necessary
analytic properties and allows us to describe
these quantities well down to a low energy scale
[6]. It should be noted that the method based
on the analytic perturbation theory in QCD [7]
also preserves the correct D-function analytic
properties and leads to very close to VPT results
8]

Let us investigate the question: can the
expression for some quantity, say for the
anomalous magnetic moment of the lepton (1),
be presented equivalently through the D(Q?) and
R(s) functions? We reformulate this question as
the criterion of the R-D self-duality. We write
down some quantity, (2, in two representations:

o0

ds
Qm = | — M(s)R(s)
Js @)

for the Minkowskian (timelike) region,

Qr= [ L EwD()

0

(3)

for the Euclidean (spacelike) region,

and investigate the equality condition: Qs = QE.
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The answer to the question gives the
interrelation between the kernels

(s+1)2’
1 t+i5d <4)
B =—5r [ T M(-2)

where the integration contour lies in the region of
analyticity of the integrand and encircles the cut
of M(—z) on the positive real z axis (see Fig. 2).

As an example, we apply this result to the
hadronic correction to the muon (1), | = u, and
get R-D self-duality expressions:

(e o]

=g () S
0

for the Minkowskian (timelike) region,

oo ()
1 /a2 [dt
had
-~ (%) [ ZEwD@
=3 (%) [ EODO
0
for the Euclidean (spacelike) region
where M(s) =n? (1= % ) + (1+m)? (14 )
2

n 141 4
In(1 —4 2
X[n( +n)—n+ 2]+1_nn nm,

B(t) = 5 | Y—— ,
\J1+4m2/t+1

3. Summary

Considering various physical quantities and
functions generated by the function R(s), we
obtained a good agreement between the VPT
result and experimental data. We investigated the
reason of such an agreement and found that these
quantities can be described in terms of the Adler
function, which is well described within the VPT
method.
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