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We present a QCD-motivated approach to the analysis of polarized Bjorken sum rule in
the nonperturbative infrared region Q2 < 1 GeV2. In this approach, we use the Gerasimov–
Drell–Hearn sum rule as a boundary condition and move from the region of large momentum
transfers to the low Q2-region. We show that the developed approach works well and note a
possible problem with the Jefferson Lab data at Q2 < 0.1 GeV2.
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1. Introduction

Deep inelastic scattering of leptons on
nucleons is one of the key processes in studying
the internal structure of a nucleon. The cross
sections of this process are described by structure
functions whose integrals form sum rules of deep
inelastic scattering from various combinations.
Among these sum rules, the polarized Bjorken
sum rule, Γp−n

1 , is central to the study of the
nucleon spin structure [1, 2]. This sum rule
is determined by the integral of the difference
between the spin-dependent structural functions
g1(x,Q

2) of the proton gp1 and the neutron gn1
over all possible values of the Bjorken variable x
for a fixed square of the transferred momentum
Q2. Note that the spin structure function g1 is of
great physical interest because it characterizes the
partial contribution of quarks to the nucleon spin,
and the integral of g(p/n)(x,Q2) determines the
total contribution of active quarks to the proton
(neutron) spin of at a fixed Q2.

In the limit Q2 →∞, the expression for the

Bjorken sum rule obtained using the algebra of
currents and isospin symmetry has the form

Γp−n
1 (Q2)|Q2→∞

=

1∫
0

[
gp1(x,Q2)− gn1 (x,Q2)

]
dx =

gA
6
, (1)

where gA is the axial coupling constant measured
in neutron β decay.

Away from the large Q2 limit, the Bjorken
sum rule has additional terms. The theoretical
description at low scales Q2 includes both
perturbative corrections and non-perturbative
terms (higher-twist corrections). It is important
to note that the Bjorken sum is actively measured
at low and intermediate values of Q2, allowing us
to test the description of perturbative corrections
and study non-perturbative ones. Thus, the
0.05 < Q2 < 3 GeV2 region has been intensively
studied at Jefferson Lab (JLab), see the recent
work [3], references therein, and the reviews [4, 6].

For small values of Q2 < 1 GeV2, the
description of perturbative contributions using
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the usual perturbative coupling αs(Q
2) faces

serious difficulties due to unphysical singularities
of αs(Q

2), such as the ghost pole, which
contradict the fundamental principle of causality.
Hence, the standard perturbative approach does
not allows one to describe experimental data on
Γp−n
1 at low Q2 and reliably extract the values

of nonperturbative parameters. In order to avoid
this difficulty, in this paper we apply an approach
(combining renormalization group symmetry and
Källén–Lehmann analyticity which is based upon
the general principles of the local quantum
field theory) called the Analytic Perturbation
Theory (APT) [7] (see [8] for more detail). The
analytic coupling without introducing additional
parameters eliminates the non-physical features
of the perturbative part and shifts the limit of
applicability of the perturbative QCD to small
momentum transfers. The APT has already been
applied to the analysis of the Bjorken sum in a
number of papers (see, e.g., [9–11]).

Since the nonperturbative part in the
Bjorken sum rule has a series of powers of 1/Q2

(higher twists) which should move near Q2 ≈
0 into a function unknown so far, we use the
technique of matching the function for large Q2

with the behavior at the lowest Q2, using for
this purpose the Gerasimov–Drell–Hearn sum rule
[12], see also [13, 14].

2. Theoretical approach

Equation (1) can be generalized for finite
Q2 and according to the OPE (operator product
extension) (see [15]) is represented as

Γp−n
1 (Q2) =

gA
6

[
1−DBS(Q2)

]
+

∞∑
i=2

µ2i(Q
2)

Q2i−2 ,

(2)
where DBS(Q2) is the perturbation part
and µ2i/Q

2i−2 are the higher-twist (HT)
contributions.

Considering very small values of Q2, the
representation HT consists of an infinite number
of terms of the series. To avoid this, the so-called

“massive” representation in the form of twist-4
[16] that includes part of the contributions of the
higher twist is used. Then expression (2) takes the
form

Γp−n
1 (Q2) =

gA
6

[
1−DBS(Q2)

]
+

µ̂4M
2

Q2 +M2
, (3)

where the values of µ̂4 and M2 were fitted in [10,
11] in different analytical QCD models. Here we
use the values of the power corrections as an input
for our model at Q0 ∼ 1 GeV2 and we get a good
description of the Γp−n

1 data in the low Q2 region.
Next we follow the approach proposed in [17]

and consider the integral

I1(Q
2) =

2M2

Q2
Γ1(Q

2) =
2M2

Q2

∫ 1

0
g1(x,Q

2)dx.

(4)
According to the GDH sum rule, the value of this
integral at Q2 = 0 is well known

I1(0) = −
µ2A
4
, (5)

where µA is the anomalous magnetic moment of
the nucleon in nuclear magnetons. The integral
I1(0) is always negative, but its value for a large

Q2 is determined by the integral
∫ 1

0
g1(x)dx

independent of Q2, positive for the proton and
negative for the neutron.

Dividing the contributions of gT and g2 (see
[18]) leads to the decomposition of I1(Q2) as the
difference between IT (Q2) and I2(Q2):

I1(Q
2) = IT (Q2)− I2(Q2),

IT (Q2) =
2M2

Q2

∫ 1

0
gT (x,Q2)dx, (6)

I2(Q
2) =

2M2

Q2

∫ 1

0
g2(x,Q

2)dx . (7)

It is possible to obtain a smooth
interpolation between large Q2 and Q2 = 0
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FIG. 1: (Color online) Result of the leading order APT matching for different number of terms in (11).

[18] by representing IpT (Q2) as

IpT (Q2) = θ(Q2
0 −Q2)

(
µA,p

4
− 2M2Q2

(Q2
0)

2
Γp
1

)
+ θ(Q2 −Q2

0)
2M2

Q2
Γp
1, (8)

where Γp
1 =

∫ 1

0
gp1(x)dx. However, such

interpolation neglects the perturbative and power
QCD corrections and, on the other hand, assumes
that at the boundary point Q0 the contribution
of g2 is already extremely small, so

IpT (Q2
0) = Ip1 (Q2

0).

Both types of corrections are easily taken into
account, but this does not allow a simple
analytical parametrization.

In this paper we pay attention to I1 without
considering I2 and IT . Let us write for the
asymptotic expression for Ii1 (i = p, n) as

Ii1(Q
2) =

2M2

Q2

[∫ 1

0
gi1(x,Q

2)dx

(
1− αs(Q

2)

2π

)
−ci
� Oi �
Q2

]
, (9)

where the one-loop perturbative correction is
taken into account as well as the contribution

of twist-4 [19]. Here ci is the charge factor equal
to 2/9 for the proton and 1/18 for the neutron,
and the matrix elements of combinations of the
reduced twist-3 and -4 operators turn out to be
equal [19] for both the proton and the neutron:
� Op �=� On �= 0.09± 0.06 GeV2.

Consider the case for the proton. In this case

IpT,pert(Q
2) = θ(Q2 −Q2

0)
2M2

Q2

[
Γp
1

(
1− αs(Q

2)

2π

)
−cp
� Op �
Q2

− Ip2 (Q2)

]
. (10)

Smooth interpolation to the GDH at Q2 = 0
is now more difficult and cannot be performed
using simple analytical formulas. Instead, we
decompose (10) into a power series at the point
Q0 and define the expression at low Q2 as:

IpT,non−pert(Q
2) = θ(Q2 > Q2

0)I0(Q
2)

+θ(Q2 < Q2
0)

N∑
n=0

1

n!

∂nI0
∂(Q2)n

|Q2=Q2
0
. (11)

Here N is the number of continuous derivatives
of these two expansions, which turns out to be a
free parameter of the model along with the value
of the matching point Q0. They must be chosen
in such a way that the condition is satisfied:

I0(0) = IGDH . (12)
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Depending on the k-order of perturbation
coupling, the matching points Q0 (they are listed
in Tab.1) shift to the region of large values Q2;
however, this changes slightly depending on the
approximation for the perturbative part, as shown
in Fig. 1.

Table 1 shows the dependence of the
matching point, Q0, on the used order, k, for the
perturbative part. As can be seen from this table,
the point Q0 varies slightly shifting from an order
to a higher order to the region of large values Q2.
Figure 1 also demonstrates the same.

Table 1. Matching points Q2
0 (in GeV2) for different

orders of APT.

LO NLO N2LO N3LO
k = 1 0.236 0.246 0.260 0.261
k = 2 0.331 0.343 0.361 0.361
k = 3 0.428 0.441 0.464 0.463
k = 4 0.526 0.541 0.569 0.567

3. Comparison of data

In Fig.2 we compare different levels of
our approximation of Ip−n1 with the JLab
experimental data for the Q2 < 1 GeV2 region. In
Fig.3 we present different types of the calculated
BSR. The solid black curve refers to the Γp−n

1

obtained in [20] from the fit of a combined
set of JLab experimental data, the dashed red
curve refers to the Γp−n

1 constructed by the
decomposition method, and the orange dash-
dotted curve is the phenomenological model
prediction from Burkert-Ioffe [21]. In Fig.4 we
present for comparison the result from [3]. One
can see form Figs.3 and 4 that our curve goes
closer to the data in the low Q2 range than other
approaches summarized in [3].

4. Conclusion

The applied «matching» procedure allows
us to smoothly move from the region of large

FIG. 2. (Color online) Ip−n
1 at different matching

points with respect to a combined set of JLab
experimental data.

Г

Г

Г

FIG. 3. (Color online) Result of comparing different
types of the BSR with respect to the combined set of
experimental data.

momentum transfers to the low-energy region
Q2 < 1 GeV2 and perform a QCD analysis of
the available experimental data in this area. We
confirm that the experimental data contradict
the Gerasimov-Drell-Hearn sum rule using the
example of the function I(Q2); their is also
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FIG. 4. (Color online) Figure similar to Fig. 3 from [3].

noticeable in the work [3]. It should be noted
that a systematic error related to the method
of conducting an experiment is not excluded.
This approach can be applied to other problems
in studying the low-energy QCD region. In
addition, the approach at different loop levels of
the perturbative part provides consistently good
agreement with experimental data in the entire
region up to the zero momentum transfers. In
future works, it is planned to consider the sum
rules for other channels, as well as the structure
of g2.
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