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Model-Independent Analysis of the Indirect Effects of an
Additional Z ′-Boson at CLIC
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In this paper, we present a technique for analyzing the indirect manifestation of an
additional Z ′-boson in the planned experiments at future e+e− colliders. The developed
technique is based on the representation of the differential cross section for the process
e+e− → f̄f (where f 6= e) incorporating new effective parameters of the Z ′-boson. The
availability of the electron polarization option plays a key role in the implementation of the
technique. As a result, we obtained model-independent constraints on the characteristics of
the Z ′-boson, taking into account the experimental capabilities of CLIC.
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1. Introduction

The Compact Linear Collider (CLIC) offers
high-energy e+e− collisions up to center-of-mass
energies of 3 TeV [1]. At the initial energy
stage

√
s = 380 GeV, we have uniquely rich

programme of Higgs and top-quark physics. At
the higher-energy stages 1.5 TeV and 3 TeV,
CLIC encompasses effects of beyond the Standard
Model (SM). For this energies stages, we have
2.5 ab−1 and 5 ab−1 very high integrated
luminosity, respectively. Polarization plays a
key role in future electron-positron and hadron
collider experiments [1, 2]. The CLIC baseline has
±80 % longitudinal electron polarization and no
positron polarization. The combined analysis of
future data from the CLIC with data from the
Large Hadron Collider (LHC) is also a point of
interest [3]. Searches for new particles is one of the
basic parts of the CLIC experimental program. In
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this paper, we focus on the additional Z ′-boson
(Z ′) [4, 5]. Presently, we have no experimental
indications for such particle [6].

We assume that the effective gauge group of
a typical Z ′ model is

SU(3)C × SU(2)L × U(1)Y × U ′(1) , (1)

where SM is supplemented by an additional U ′(1)
gauge group [7–12]. The reason for the appearance
of the Z ′ is symmetry breaking at energies of the
order of TeV.

Grand unified theories predict many new
particles, such as exotic fermions, additional
charged gauge bosons or additional Higgs
bosons. The number of exotic fermions increases
significantly with the size of the gauge group. We
shall ignore the couplings to other beyond-SM
particles such as exotic fermions.

The general interaction Lagrangian for the
gauge group (1) has the form:

LNC =
δZ′

2
Z ′µf̄γ

µ
(
gfv (Z ′)− gfa (Z ′)γ5

)
f

=
∑
α=±

δZ′Z
′
µf̄γ

µgαZ′,fωαf , (2)

where ω± = (1±γ5)/2 and the Z ′ couplings (δZ′ ,
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gfv,a(Z ′) and g±Z′,f ) depend on the choice of the
U ′(1).

Taking into account the actual bounds on
the MZ′ ∼ 4 − 5 TeV [13–16], we can study only
indirect (or virtual) effects of the Z ′ at CLIC.
We describe such effects as deviations from the
prediction of the SM [17].

If a Z ′ is indeed discovered, possibly at
hadron collider, precise measures of Z ′ couplings
at CLIC would be essential for testing extended
gauge models. In this regard, the primary focus is
to obtain model-independent constraints on the
Z ′ couplings and to investigate the sensitivity of
the process e+e− → f̄f to the chiralities λe and
λf . To achieve the goal, we propose a technique
(Sec. 5) that is based on the differential cross-
section representation (Sec. 4). Linear dependence
of this representation on the new effective
parameters allows to get constraints using a
combination of polarized observables. As a result,
we obtained model-independent constraints on
the left- and right-handed couplings of the Z ′

for 2 high energy energy stages at CLIC (Sec.
6). Such constraints can be used in the model-
dependent analysis. The statistical processing
plays a very important role in a such research.
Often, correlation is not taken into account. Our
technique takes into account the correlation. Note
that the mass mixing of Z − Z ′ bosons [18–20] is
not taken into account in this paper.

2. Kinematics

We discuss a case of f 6= e in the process

e−(p1, λp1)+e+(p2, λp2)→ f(k1, λk1)+f̄(k2, λk2) ,
(3)

where four-momentum pµi have the form:

pµ1 =

√
s

2
(γij , 0, 0, βij) , pµ2 =

√
s

2
(γji, 0, 0,−βij) ,

(4)

Pµ = pµ1 + pµ2 =
√
s (1, 0, 0, 0) . (5)

In the (4), βij and γij are

βij = βm2
i ,m

2
j

(s) =

√
1 +

(
x2
i − x2

j

)2
− 2

(
x2
i + x2

j

)
,

(6)

γij = γm2
i ,m

2
j
(s) = 1 + x2

i − x2
j , xi = mi/

√
s .

(7)

where mi,j is the fermion masses.
In case of mi,j = me, the vectors (4) have

the form:

pµ1 =

√
s

2
(1, 0, 0, βe) , pµ2 =

√
s

2
(1, 0, 0,−βe) .

(8)

In case of mi,j = mf , we have, respectively:

kµ1 =

√
s

2
(1, βf sin θ cosφ, βf sin θ sinφ, βf cos θ) ,

kµ2 =

√
s

2
(1,−βf sin θ cosφ,−βf sin θ sinφ,−βf cos θ) ,

(9)

where
√
s is the center-of-mass energy, βf =√

1− 4m2
f/s is the velocity of the final state

fermion in the center-of-mass and θ is the angle
between outcoming anti-fermion f̄ and incoming
positron e+.

3. Amplitude

The process (3) at the Born level is described
by s-channel Feynman diagram, shown in the Fig.
1.

The amplitude of this diagram is written as
follows:

Mλp1 ,λp2
λk1 ,λk2

(V )

= (−1)
δV
s
RV

(
gµν − PµP ν

M2
V

) ∑
α1,α2=±

gα1
V,eg

α2
V,f

×ῡλp2 (p2) γµωα1uλp1 (p1)ūλk1 (k1)γνωα2υλk2 (k2) ,

(10)

where RV = s/(s−M2
V + iMV ΓV ) is the vector

boson propagator, δV is the gauge coupling,
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FIG. 1: Feynman diagram of the process (3).

ΓV is the total decay width and MV is the
mass of vector boson V . The bispinors uλp1 (p1)
and υλk2 (k2) satisfy Dirac equations and spin
conditions for massive fermion and anti-fermion.

The couplings of the left- (L,−) or right-
(R,+) handed fermion to the SM vector bosons
are defined as:

g
λf
γ,f = −Qf , λf = ± ,

g
λf
Z,f =

(
T3f δ−,λf − Qf sin θ2

W

)
sin θW cos θW

, (11)

where Qf is the charge of fermion, T3f is the
third component of the SM isospin and θW is the
Weinberg–Salam angle.

We use the original technique [21] to derive
the compact form of the amplitude for all possible
spin variables:

Mλp1 ,λp2
λk1 ,λk2

(V ) = 2δVRV

{
λk1λp1δλk2 ,λk1 δλp2 ,λp1g

f
a (V )gea(V )η̃f η̃e ×

(
s

M2
V

− 1

)
+
(
g̃fλk1

(V )δλk2 ,−λk1 + gfv (V )δλk2 ,λk1 η̃f

)(
g̃eλp1

(V )δλp2 ,−λp1 + gev(V )δλp2 ,λp1 η̃e

)
D∗1λp12 ,λk12

(φ, θ,−φ)
}
,

(12)

where

g̃iλ(V ) = giv(V )− λβigia(V ) , (13)

ηi =
mi√
s
, η̃i =

√
2

s
mi , i = e, f , (14)

λp12 = (λp1 − λp2)/2 , λk12 = (λk1 − λk2)/2 ,
(15)

and gfv (V ) = 1
2(g−V,f + g+

V,f ), gfa (V ) = 1
2(g−V,f −

g+
V,f ) are the vector and axial fermion couplings,
respectively.

For the case me �
√
s, the amplitude (12)

can be represented as:

Mλp1 ,λp2
λk1 ,λk2

(V ) = 2δλp2 ,−λp1D
∗1
λp12 ,λk12

(φ, θ,−φ)

×
(
δλk2 ,−λk1 g̃

f
λk1

(V ) + gfv (V )δλk2 ,λk1 η̃f

)
g
λp1
V,e δVRV ,

(16)

because g̃eλ(V ) = gλV,e and η̃e = 0.

4. Differential cross-section

The square of amplitude (16), after a number
of transformations, can be represented in the
form:

|Mλp1 ,λp2 (e+e− → γ, Z, Z ′ → f̄f)|2

=
∑
λk1=±

∑
λk2=±

|Mλp1 ,λp2
λk1 ,λk2

|2 = δλp2 ,−λp1

×
∑

i,j=γ,Z,Z′

Pij(s)Ge

{
λp1,λp1
i , j

}[
4gfv (i)gfv (j)η̃2

f sin2 θ

+G̃f

{
+,+
i, j

}
h+
p1 + G̃f

{
−,−
i, j

}
h−p1

]
, (17)
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where

Pij(s)

=
s2((s−M2

i )(s−M2
j ) +MiΓiMjΓj)

((s−M2
i )2 +M2

i Γ2
i )((s−M2

j )2 +M2
j Γ2

j )
,

(18)

Gf

{
λ1,λ2
i , j

}
= gλ1i,f × g

λ2
j,f , (19)

G̃f

{
λ1,λ2
i , j

}
= g̃fλ1(i)× g̃fλ2(j), (20)

h±p1 = (1± λp1 cos θ)2 . (21)

The differential scattering cross-sections of
the processes e−L e

+
R → ff̄ and e−Re

+
L → ff̄ can

be, respectively, written as:

dσLR

dz
=
∑
λk1=±

∑
λk2=±

dσ
{
− , +
λk1,λk2

}
dz

, (22)

dσRL

dz
=
∑
λk1=±

∑
λk2=±

dσ
{

+ , −
λk1,λk2

}
dz

. (23)

where z ≡ cos θ.
After some transformations, we can find that

the expressions (22) and (23) are written in the
following form:

dσLR

dz
= NC

πα2
emβf
2s

[
2η2
fq
SM+Z′

ef

{−,−
−,+
}

+ (1− βfz)2

×qSM+Z′

ef

{−,−
+,+

}
+ (1 + βfz)

2qSM+Z′

ef

{−,−
−,−
} ]

,

(24)

dσRL

dz
= NC

πα2
emβf
2s

×

×
[
η2
f

(
qSM+Z′

ef

{+,+
−,+
}

+ qSM+Z′

ef

{+,+
+,−
})

+

+(1 + βfz)
2qSM+Z′

ef

{+,+
+,+

}
+

+(1− βfz)2qSM+Z′

ef

{+,+
−,−
} ]

. (25)

where

qSM+Z′

ef

{
λ1,λ2
λ̃1, λ̃2

}
=

=
∑

i,j=γ,Z,Z′

Pij(s)Ge

{
λ1,λ2
i , j

}
Gf

{
λ̃1, λ̃2
i , j

}
, (26)

and NC is the color factor (1 for leptons and 3 for
quarks) and αem is the fine-structure constant.

If we take into account electron Pe− and
positron Pe+ polarization fraction, the differential
cross-section can be written in the form:

dσSM+Z′

Pe− ,Pe+

dz
= (1− Pe−Pe+)

1

4

×

{
(1− Peff)

dσLR

dz
+ (1 + Peff)

dσRL

dz

}
, (27)

Peff =
Pe− − Pe+
1− Pe−Pe+

, (28)

where Peff is the effective polarization.
Finally, by some manipulations, we can

rewrite the (27) as:

dσSM+Z′

Pe− ,Pe+

dz
= NC(1− Pe−Pe+)

πα2
emβf
8s

[
QSM+Z′

3

+(1− zβf )2QSM+Z′

1 + (1 + zβf )2QSM+Z′

2

]
,

(29)

The linearity of QSM+Z′

1,2,3 is a crucial aspect
of the technique presented in the Sec. 5.

It is important to note that effective
parameters QSM+Z′

1,2,3 depend on polarization
p±eff = 1± Peff as follows:

QSM+Z′

1 = p−effq
SM+Z′

ef

{−,−
+,+

}
+ p+

effq
SM+Z′

ef

{+,+
−,−
}
,

QSM+Z′

2 = p−effq
SM+Z′

ef

{−,−
−,−
}

+ p+
effq

SM+Z′

ef

{+,+
+,+

}
,

QSM+Z′

3 = p−eff

(
qSM+Z′

ef

{−,−
−,+
}

+ qSM+Z′

ef

{−,−
+,−
})

+

+p+
eff

(
qSM+Z′

ef

{+,+
−,+
}

+ qSM+Z′

ef

{+,+
+,−
})

, (30)

It is convenient to rewrite (30) in a more compact
form:

QSM+Z′

1 = p−eff |q
SM+Z′

LR |2 + p+
eff |q

SM+Z′

RL |2 ,

QSM+Z′

2 = p−eff |q
SM+Z′

LL |2 + p+
eff |q

SM+Z′

RR |2 ,

QSM+Z′

3 = 2η2
f (p−eff <[qSM+Z′

LL q∗SM+Z′

LR ]

+p+
eff <[qSM+Z′

RL q∗SM+Z′

RR ]) , (31)

where

qSM+Z′

λeλf
=

∑
i=γ,Z,Z′

gλei,eg
λf
i,f

s

s−M2
i + iMiΓi

.

(32)
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In the (32), indices λe and λf indicate the
handedness of the initial electron and final
fermion, respectively.

In case of mf �
√
s, the expression (29)

depends only on QSM+Z′

1 and QSM+Z′

2 effective
parameters:

dσSM+Z′

Pe− ,Pe+

dz
= NC(1− Pe−Pe+)

πα2
em

8s

×
[
(1− z)2QSM+Z′

1 + (1 + z)2QSM+Z′

2

]
. (33)

5. Model-independent technique

For the scenario MZ′ �
√
s, only the

interference of the SM term with the Z ′ exchange
is important. In this case the deviation from the
SM prediction is given by:

∆Qi
(
p−eff , p

+
eff

)
= QSM+Z′

i −QSMi , (i = 1, 2) ,
(34)

where

∆qλeλf = |qSM+Z′

λeλf
|2 − |qSMλeλf |

2 . (35)

As one can see, deviations ∆qλeλf depend on the
combination of λe and λf .

To obtain model-independent constraints on
the ∆Q1,2 we use a χ2 test. A Z ′ gives a signal
in the observable Oi if the deviation ∆Oi from
the SM prediction is more then experimental
error δOi. To extract confidence intervals on the
Ω = ∆Q1,2, we assume that the Ω follow an n-
dimensional normal distribution (i = 1, . . . , n):

f(Ω) =
1

(2π)n/2|Ṽ |1/2

× exp

[
−1

2
(Ω− Ω̂)T Ṽ −1 (Ω− Ω̂)

]
. (36)

Then, the square form

F (Ω, Ω̂) = (Ω− Ω̂)T Ṽ −1 (Ω− Ω̂) , (37)

follow a χ2 distribution [22].
For our case, optimal set Ω̂ = 0 because the

absence of ∆Qi deviations implies thatQSM+Z′

i =
QSMi .

In the square form (37), the covariance
matrix Ṽ depend on the correlation coefficient ρij
and the standard deviations σi,j .

Subsequently, we can write the following
statement:

Prob
[
F (Ω, Ω̂) ≤ K2

α

]
= α , (38)

where K2
α is the quantile of the n-dimensional χ2

distribution, which is defined by the integral:∫ K2
α

0

2−n/2

Γ(n/2)
exp[−x/2]xn/2−1dx = 1− α . (39)

By (38), the equation for the confidence region of
Ω for confidence level C.L. = 1−α can be written
as:

F (Ω, Ω̂) = K2
α = ∆χ2

crit , (40)

therefore

χ2(Ω) ≈ χ2
min + ∆χ2

crit ,

χ2
min = χ2(Ω̂) . (41)

where χ2
min = 0, ∆χ2

crit sets the confidence level
(C.L.), typically 68.27% or 95%.

The range of Ω can be estimated by three
probabilities:

1. The probability of being within the
inscribed elliptical region ξ1;

2. The probability of being within the
described rectangular region ξ2. For such a
case, the following probabilistic statement
can be written as:

Prob [Ω̂1 −Kασ1 ≤ Ω1 ≤ Ω̂1 +Kασ1 and

Ω̂2 −Kασ2 ≤ Ω2 ≤ Ω̂2 +Kασ2] = ξ2 . (42)

The probabilistic content ξ2 > ξ1 and
depends on ρ12, which influences the shape
and angle of the ellipse’s inclination.

3. The probability of being within the
horizontal strip ξ3, corresponding to the
probabilistic statement:

Prob [Ω̂1 −Kασ1 ≤ Ω1 ≤ Ω̂1 +Kασ1 or

Ω̂2 −Kασ2 ≤ Ω2 ≤ Ω̂2 +Kασ2] = ξ3 . (43)
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Often, correlation, particularly case 2, are
not considered and only one-parameter intervals
from case 3 are used. The case 3 can be used
when the correlation is not significant, but it is
important to understand that ξ1 and ξ3 are not
equivalent.

As an observable we use the number of
events NSM+Z′

i in the phase space z:

Oi ≡ NSM+Z′

i = Lint · cpol · εf

·
∫ zi+1

zi

(
dσSM+Z′

dz

)
dz , (44)

where Lint is the time-integrated luminosity, cpol
is a coefficient that depends on the electron and
positron polarization, εf is the efficiency in the
reconstruction and identification of fermions.

Due to the high luminosity, the number of
events in the bin is relatively large and follows
a Poisson distribution. Then, the random error
is equal to

√
NSM
i . If we take into account

systematic uncertainty δsyst, the experimental
error is

δOi ≡ δNSM
i =

√
NSM
i (1 + δ2

systN
SM
i ) , (45)

After that, to extract confidence intervals on
the Ω, we can write the χ2 function as follows:

χ2(Ω) =
k∑
i=1

[
∆Ni(Ω)

δNSM
i

]2

≈ χ2
min + ∆χ2

crit ,

(46)

where ∆Oi ≡ ∆Ni(Ω) = NSM+Z′

i (Ω) − NSM
i

and k sets the number of bins for the angular
distribution. It is not necessary to plot an ellipse
in order to extract the confidence intervals [23].
Standard deviations and correlation coefficient
can be derived from the equation. For example,
after numerical calculation (45) we have an
equation of the form:

C11Ω2
1 + 2C12Ω1Ω2 + C22Ω2

2 + C33 = 0 . (47)

Using these Cij coefficients it is possible to

calculate ρ12 and σ1,2:

ρ12 = − C12√
C11C22

, (48)

σ1 =

√
C11√

C11C22 − C2
12

, σ2 =

√
C22√

C11C22 − C2
12

.

(49)

where

C11 =
k∑
i=1

δC2
i w

2
i,− , C22 =

k∑
i=1

δC2
i w

2
i,+ , (50)

C12 =

k∑
i=1

δC2
i wi,−wi,+ . (51)

In these equations, δCi is defined as:

δCi =
Lint cpol εf NC (1− Pe−Pe+)

δNSM
i

πα2
em

8s

(52)

and

wi,± = zi+1

(
1± zi+1 +

z2
i+1

3

)
−zi

(
1± zi +

z2
i

3

)
.

(53)
Analyzing the (48) and (49), we can conclude

that the σ1,2 and ρ12 are independent of the
∆χ2

crit ≡ −C33.
By option of initial polarization, we have

the opportunity to investigate two identical
observables. In order to obtain confidence
intervals on the deviation parameters (35), two
numbers of events with different polarization shall
be considered. As a result of this, we compose
a system of equations and obtain the following
solutions:

∆qLR =
p+,b

eff ∆Qa1 − p
+,a
eff ∆Qb1

p−,aeff p+,b
eff − p

+,a
eff p−,beff

,

∆qRL =
p−,aeff ∆Qb1 − p

−,b
eff ∆Qa1

p−,aeff p+,b
eff − p

+,a
eff p−,beff

,

∆qLL =
p+,b

eff ∆Qa2 − p
+,a
eff ∆Qb2

p−,aeff p+,b
eff − p

+,a
eff p−,beff

,

∆qRR =
p−,aeff ∆Qb2 − p

−,b
eff ∆Qa2

p−,aeff p+,b
eff − p

+,a
eff p−,beff

, (54)
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where {a, b} = {Pe− = {a1, b1} , Pe+ = {a2, b2}}.
These linear combinations also have normal

distribution. Taking this into account, we
calculate the (54) as:

|∆qλeλf | = nC.L.

√
c2

1

(
∆Q

{a,b}
i

)2
+ c2

2

(
∆Q

{a,b}
i

)2
.

(55)

where nC.L. sets the confidence level (1 for 68.27%
C.L. and 1.96 for 95% C.L.) and the c2

i are
coefficients from equations (54) that depend on
combination of p±,{a,b}eff .

To extract the constraints on the Z ′

couplings, we assume that the total decay width
is relatively large ΓZ′ = 0.1×MZ′ .

6. Numerical results

In this section we discuss the sensitivity of
the process e+e− → f̄f (where f = µ, τ, b, c) to
the chirality λe and λf at CLIC. To this aim, we
consider 2 stages with energies of the order of TeV
(Table 1). For each of these stages, a baseline is
adopted of sharing the running time for −80 %
and +80 % electron polarization in the ratio 80:20
[1]. Then, the coefficient cpol = 1/5 in the formula
(44) is: 1/5 for the +80 % electron polarization,
4/5 for the −80 % electron polarization and 1
for unpolarized initial beams. We have chosen the
polarization configurations a = {0, 0} and b =
{−0.8, 0} in order to increase the total number of
events.

Table 1: Baseline CLIC stages.
√
s [TeV] Lint [ab−1]

Pe− = 0 % Pe− = −80 % Pe− = +80 %
1.5 2.5 2.0 0.5
3.0 5.0 4.0 1.0

For numerical calculation, we take into
account the systematic uncertainty δsyst = 2 %
and assume that the identification efficiency are:
100 % for µ+µ− events, 50 % for τ+τ− events,
80 % for b̄b events, 50 % for c̄c events. The

region of the angular distribution at CLIC is
bounded by the interval [−1, 1] and divided by the
number of bins k = 20 [1]. Since it is impossible
to distinguish quark and anti-quark jets in the
experiments, we have reduced the number of
events in the process e+e− → q̄q by half. Even
so, the statistics of events for leptons and quarks
are not significantly different because for quarks
a color factor NC = 3.

First of all, we calculate the σ1,2 for the
∆Qa,b1,2 which depend on the correlation coefficient
(Tables 2 and 3). In our case, the correlation
turned out to be negative and negligible.

Table 2. Standard deviations for ∆Q
{a,b}
1,2 at CLIC

with
√
s = 1.5 TeV (ρ12 ≈ −0.21).

fermion ∆Qa1 ∆Qa2 ∆Qb1 ∆Qb2
µ ∓0.0076 ∓0.0146 ∓0.0085 ∓0.0168
τ ∓0.0106 ∓0.0197 ∓0.0119 ∓0.0228
b ∓0.0025 ∓0.0070 ∓0.0030 ∓0.0098
c ∓0.0049 ∓0.0122 ∓0.0065 ∓0.0154

Table 3. Standard deviations for ∆Q
{a,b}
1,2 at CLIC

with
√
s = 3 TeV (ρ12 ≈ −0.21).

fermion ∆Qa1 ∆Qa2 ∆Qb1 ∆Qb2
µ ∓0.0106 ∓0.0197 ∓0.0119 ∓0.0228
τ ∓0.0149 ∓0.0272 ∓0.0167 ∓0.0315
b ∓0.0036 ∓0.0097 ∓0.0042 ∓0.0135
c ∓0.0069 ∓0.0168 ∓0.0092 ∓0.0213

In order to assess the sensitivity, using
equations (54) and (55) we obtain model-
independent constraints on the deviation ∆qλeλf
for all possible combinations of λe and λf . As
shown in Tables 4 and 5, the process e+e− → f̄f
is the most sensitive to LR chiral combination.

Table 4. Model-independent constraints on the ∆qλeλf

at CLIC with
√
s = 1.5 TeV (68.27% C.L.).

fermion ∆qLR ∆qRL ∆qLL ∆qRR

µ ∓0.0054 ∓0.0101 ∓0.0107 ∓0.0195
τ ∓0.0076 ∓0.0141 ∓0.0145 ∓0.0264
b ∓0.0019 ∓0.0034 ∓0.0062 ∓0.0100
c ∓0.0041 ∓0.0068 ∓0.0098 ∓0.0167
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Table 5. Model-independent constraints on the ∆qλeλf

at CLIC with
√
s = 3 TeV (68.27% C.L.).

fermion ∆qLR ∆qRL ∆qLL ∆qRR

µ ∓0.0076 ∓0.0141 ∓0.0145 ∓0.0264
τ ∓0.0106 ∓0.0197 ∓0.0200 ∓0.0364
b ∓0.0027 ∓0.0048 ∓0.0085 ∓0.0138
c ∓0.0058 ∓0.0096 ∓0.0135 ∓0.0231

To assess the sensitivity, we obtained allowed
regions for the Z ′ couplings, shown in Figs. 2
and 3. The lines on these plots indicate the
bounds of the allowed regions for different choices
of λe and λf . To accomplish this, we use the
assumption of the Z ′ total decay width, along
with formula (35) and the explicit form given in
(33). as shown in Figs. 2 and 3, the best sensitivity
is observed for the LL chiral combination of the Z ′

couplings, which is attributed to the fact that the
contribution of qSMLL in the formula (35) exceeds
that of qSMLR .

Figs. 4 and 5 show how the regions depend
for the product of gLZ′,e × gLZ′,f on the choice of
the final state f̄f . The best sensitivity occurs for
b quarks, while the worst one is for τ leptons.
This is related to the identification efficiency of
τ+τ− events, which is half that for µ+µ− events.
This difference is explained by the fact that for
τ+τ− events only hadronic decays are taken into
account [1]. In the general case, it is possible to
constrain only product of electron and fermion
Z ′ couplings (gλeZ′,e × g

λf
Z′,f ). However, using the

assumption of lepton universality for the Z ′

couplings, the process e+e− → `+`− has become
unique. In this case, we can individually extract
lef- and right-handed lepton couplings of the Z ′

(gLZ′,` and gRZ′,`). In this regard, the comparison
of Z and Z ′ couplings is of some interest. The
Tables 6 and 7 shows this comparison as the ratio
|gλ`Z,`| / |g

λ`
Z′,`| for MZ′ fixed at 5, 10 and 15 TeV.

Table 6. Ratio of |gλ`

Z,`| / |g
λ`

Z′,`| for ` = µ at CLIC with√
s = 1.5 TeV (68 % C.L.).

λ` MZ′ = 5 TeV MZ′ = 10 TeV MZ′ = 15 TeV
L 3.4 1.7 1.1
R 1.9 0.9 0.6

Table 7. Ratio of |gλ`

Z,`| / |g
λ`

Z′,`| for ` = µ at CLIC with√
s = 3 TeV (68 % C.L.).

λ` MZ′ = 5 TeV MZ′ = 10 TeV MZ′ = 15 TeV
L 7.0 2.9 1.9
R 3.9 1.7 1.1

Another interesting question is the potential
of the process (3) to identify the MZ′ by the
measurement of the cross-section, which depends
of the couplings of Z ′ and MZ′ . For this case,
model-independent analysis can be employed in
the context of a model-dependent analysis. If the
model is given, i.e., we know the Z ′ couplings, it
is possible to obtain constraints on the MZ′ .
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FIG. 2. Model-independent bounds on the product
of electron and muon chiral couplings of the
Z ′ in the e+e− → µ+µ− at CLIC [

√
s =

1.5 TeV, Lint = 2.5 ab−1(unpolarized) and Lint =
2 ab−1(polarized)] for 68.27 % C.L. (different line
colors correspond to various choices of chiral
combinations).
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FIG. 3. Model-independent bounds on the product
of electron and muon chiral couplings of the Z ′ in
the e+e− → µ+µ− at CLIC [

√
s = 3 TeV, Lint =

5 ab−1(unpolarized) and Lint = 4 ab−1(polarized)]
for 68.27 % C.L. (different line colors correspond to
various choices of chiral combinations).
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FIG. 4. Model-independent bounds on the product of
electron and fermion chiral couplings of the Z ′ in the
e+e− → f̄f (where f = µ, τ, b, c) at CLIC [

√
s =

1.5 TeV, Lint = 2.5 ab−1(unpolarized) and Lint =
2 ab−1(polarized)] for 68.27 % C.L. (different line
colors correspond to various choices of the final state).
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FIG. 5. Model-independent bounds on the product of
electron and fermion chiral couplings of the Z ′ in the
e+e− → f̄f (where f = µ, τ, b, c) at CLIC [

√
s =

3 TeV, Lint = 5 ab−1(unpolarized) and Lint =
4 ab−1(polarized)] for 68 % C.L. (different line colors
correspond to various choices of the final state).

7. Concluding remarks

The paper presents a technique for analyzing
characteristics of an additional Z ′-boson in
the process e+e− → f̄f (where f 6= e).
This approach is based on the introduction
of effective parameters (34), which depend
on both the polarization of electron-positron
beams and the characteristics of the Z ′-boson.
The linear dependence of the electron-positron
annihilation cross-section on these effective
parameters allows to obtain constraints using
a combination of polarized observables. This
technique makes it possible to obtain both model-
independent and model-dependent constraints on
the characteristics of the Z ′-boson. The effective
parameters allow to extract separate and model-
independent information about individual lepton
couplings of the Z ′ (gLZ′,`, gRZ′,`) under the
assumption of lepton universality for a fixed
MZ′ . In case of quark pair production, we can
only constrain the product of electron and quark
couplings of the Z ′ (gL,RZ′,e × g

L,R
Z′,q).

By applying the technique, we obtained
model-independent allowed regions for the mass
and combinations of chiral couplings of the Z ′-
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boson for various final states (f = µ, τ, b, c) and
high-energy stages at CLIC. The best sensitivity
occurs for b quarks and µ leptons.
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