Литература

1. Further Measurement on the Decay $\pi^+ \rightarrow e^+ v_e \gamma$ / P. Depommier, J. Heintze, C. Rubbia, V. Soergel // Phys.Lett. – 1963. – Vol.7. – P. 285–287.

2. New Precise Measurement of the Pion Weak Form Factors in $\pi^+ \rightarrow e^+ v_e \gamma$ Decays / M. Bychkov [et al.] (PIBETACollab.) // Phys. Rev. Lett. – 2009. – Vol. 103. – P. 051802(4).

3. Исследование редких распадов пионов на спектрометре PIBETA / Д. Почанич [и др.] // Письма в ЭЧАЯ. – 2018. – Т. 15, № 6 (218). – С. 481–496.

4. Bijnens, J. $\pi \rightarrow l\nu\gamma$ Form Factorsat Two Loop / J. Bijnens, P. Talavera // Nucl. Phys. B. - 1997. - Vol. 489. - P. 387-404.

5. Geng, C. Q. Axial VectorForm Factorsfors $K_{12\gamma}$ and $\pi_{12\gamma}$ at $O(p^6)$ in Chiral Perturbation

Theory / C. Q. Geng, I-Lin Ho, T. H. Wu // Nucl. Phys. B. – 2004. – Vol. 684. – P. 281–317.

6. Pichl, H. On the Radiative Decay / H. Pichl, R. Unterdorfer // Eur. Phys. J. C. - 2008. - Vol. 55. - P. 273–283.

7. PDG Prog.Theor.Exp.Phys. – 2022 – 083C01.

8. Efimov, G. V. The Quark Confinement Model of Hadrons / G. V. Efimov, M. A. Ivanov. – London: IOP Publishing Ltd, 1993.

С. Л. Авакян, Е. З. Авакян

Гомельский государственный технический университет имени П. О. Сухого, г. Гомель, Республика Беларусь

ПОЛУЛЕПТОННЫЕ РАСПАДЫ МЕЗОНОВ

Введение. Мезоны являются простейшими двухкварковыми системами, поэтому их изучение представляется крайне важным, для решения упомянутых выше проблем. Задача изучения полулептонных распадов мезонов остается актуальной на протяжении многих десятилетий. Это связано с тем, что в указанных распадах тесно сплетены слабые и сильные взаимодействия кварков. Следует отметить, что при полулептонных распадах появление одного (и только одного) адрона в конечном состоянии порождает более богатую феноменологию по сравнению с чисто лептонными распадами. В то же время, описание полулептонных распадов, в отличие от нелептонных, не требует дополнительных предположений о взаимосвязи сильных и слабых взаимодействий на малых расстояниях.

Каонные распады рассматриваются в целом ряде обзоров, например, [1]. Экспериментальное изучение этих распадов ведется рядом экспериментальных групп. (BNL KEK – JAEA IHEP, Protvino INFN, Frascati) [2]. В последнее время мезонные системы, содержащие «тяжелые» кварки привлекают большое внимание. Это связано с появлением достаточного количества экспериментальных данных, полученных, Belle [3], BESIII [4–7] и CLEO [8].

Трудность теоретического изучения указанных мезонных систем заключается в том, что для описания D мезонов невозможно применить, ни киральный предел ($m_c \rightarrow 0$), ни эффективную теорию ($m_c \rightarrow \infty$). В последнее время интенсивно развиваются теоретические подходы, например, основанных на применении кварковых моделей [9], эффективной киральной теории [10] и ряде других. В данной работе адронные матричные элементы вычисляются в Ковариантной Модели Конституэнтных Кварков (КМКК) [11].

1. Матричные элементы полулептонных распадов мезонов. Матричный элемент полулептонного распада мезона имеет вид:

$$M(M_{1} \to M_{2} l \nu_{l}) = \frac{G_{F}}{\sqrt{2}} V_{q_{1}q_{2}} H^{\mu} L_{\mu}, \qquad (1)$$

где L_{μ} и H^{μ} – лептонный и адронный токи, которые могут быть записаны как:

$$L_{\mu} = \overline{\nu}_{l} \gamma_{\mu} (1 - \gamma_{5}) l, \qquad (2)$$

$$H^{\mu} = M_2 |V^{\mu} - A^{\mu}| M_1, \qquad (3)$$

где $V^{\mu} = \overline{q}_1 \gamma^{\mu} q_2$ и $A^{\mu} = \overline{q}_1 \gamma^{\mu} \gamma_5 q_2$ – изменяющие кварковые ароматы векторный и аксиально векторный токи соответственно.

Все эффекты, связанные с сильными взаимодействиями кварков, описываются именно адронным током (3), который также называют матричным элементом. Вычисление подобных матричных элементов является одной из проблем современной физики, поскольку механизмы кваркового конфайнмента и адронизации на сегодняшний день нам неизвестны. В данной работе адронные матричные элементы будем вычислять в рамках КМКК [11].

Соответствующий петлевой интеграл в КМКК имеет вид

$$I_{M_{1}M_{2}}^{\mu}\left(\hat{p}_{M_{1}},\hat{p}_{M_{2}}\right) = \int \frac{d^{4}k}{\left(2\pi\right)^{4}i} \Phi_{M_{1}}\left(-\left(k+w_{13}p_{1}\right)^{2}\right) \Phi_{M_{2}}\left(-\left(k+w_{32}p_{2}\right)^{2}\right) \times \times Tr\left\{\Gamma_{M_{1}}S_{q_{1}}\left(\hat{k}+\hat{p}_{1}\right)\Gamma_{M_{2}}S_{q_{2}}\left(\hat{k}+\hat{p}_{2}\right)\gamma^{\mu}\left(1-\gamma_{5}\right)S_{q_{3}}\left(\hat{k}\right)\right\},$$
(4)

где $\Phi_{M_{1,2}}$ – формфакторы начального и конечного мезонов, имеющие вид

$$\Phi_{M}\left(-l^{2}\right) = \exp\left(-\frac{l^{2}}{\Lambda_{M}^{2}}\right),$$

где $\Lambda_{\scriptscriptstyle M}$ – параметр модели, характеризующий размер данного мезона;

 $S_{q_i}(\hat{k})$ – пропагаторы свободных конституэнтных кварков

$$S_q(\hat{k}) = \frac{1}{m_a - \hat{k} - i\epsilon}$$

В данной работе рассматриваются полулептонные распады псевдоскалярных частиц, поэтому $\Gamma_{M_1} = i \gamma_5$.

В случае распада псевдоскалярного мезона в псевдоскалярный мезон и лептннную пару вклад аксиально-векторного тока в H^{μ} . равен нулю. Поэтому адронный матричный элемент может быть параметризован двумя форм факторами, зависящими от переданного мезонами импульса:

$$I^{\mu}(p_1, p_2) = F_+(t)(p_1 + p_2)^{\mu} + F_-(t)(p_1 - p_2)^{\mu}, \quad t = (p_1 - p_2)^2.$$
(5)

2. Распад $K \to \pi e v_e$. Матричный элемент распада $K \to \pi e v_e$ определяется как диаграммами, описывающими прямой переход, так и диаграммами с промежуточным векторным мезоном.

$$F_{\pm}(t) = F_{\pm}^{d}(t) + F_{\pm}^{K}(t).$$
(6)

Петлевой интеграл, соответствующий «прямой» диаграмме в МКК имеет вид

$$H_{d}^{\mu} = 3g_{k}g_{\pi}\int \frac{d^{4}k}{(2\pi)^{4}i} \Phi_{K}\left(-\left(k+w_{us}p_{1}\right)^{2}\right) \Phi_{\pi}\left(-\left(k+\frac{1}{2}p_{2}\right)^{2}\right) \times Tr\left\{\Gamma_{M_{1}}S_{q_{1}}\left(\hat{k}+\hat{p}_{1}\right)\Gamma_{M_{2}}S_{q_{2}}\left(\hat{k}+\hat{p}_{2}\right)\gamma^{\mu}S_{q_{3}}\left(\hat{k}\right)\right\}.$$
(7)

Формфакторы $F_{\pm}^{a}(t)$ вычислены по правилам КМКК [11].

Матричный элемент, связанный с диаграммой, содержащей промежуточный векторный мезон, может быть записан в виде

$$H_{b}^{\mu}(p_{1},p_{2}) = g_{K}g_{\pi}T_{K\pi K^{*}}^{\nu}(t)g_{K^{*}}G_{K^{*}}^{\nu\rho}(t)g_{K^{*}}D_{K^{*}}^{\rho\mu}(t), \qquad (8)$$

где $T^{\vee}_{K\pi K^*}(t)$ – формфактор распада $K \to \pi K^*(K^*$ – виртуальный);

 $D_{K^*}^{
ho\mu}ig(tig)$ – форм фактор перехода $K^* o ev_e$;

 $G_{K^*}^{v\rho}(t)$ – пропагатор виртуального K^* мезона, в цепочном приближении.

После стандартных преобразований КМКК [11] нами получены выражения для вкладов промежуточного векторного мезона в формфакторы $F_{\pm}^{K}(t)$. Формфакторы распада могут быть параметризованы как:

$$F_{\pm}(t) = F_{\pm}(0) \left(1 + \lambda_{\pm} \frac{t}{m_{\pi}^2} \right).$$
⁽⁹⁾

Помимо $\lambda_{_\pm}$ экспериментально определяется параметр (таблица 1)

$$\xi(0) = \frac{F_{-}(0)}{F_{+}(0)}.$$
(10)

Таблица	1 – Y	[исленные	значения	указанных	парамет	ров
---------	-------	-----------	----------	-----------	---------	-----

Параметр	Полученное значение	Эксперимент [12]	
$\lambda_{_{+}}$	$0,034 \pm 0,004$	$0,0298\pm0,0005$	
λ_	$0,028 \pm 0,0036$	0	
$\xi(0)$	$-0,38\pm0,0047$	$-0,35\pm0,14$	

3. Полулептонные распады D мезонов. Матричные элементы полулептонных распадов D могут быть вычислены по формуле (1) и параметризованы по формуле (5).

Соответствующий структурный интеграл имеет вид:

$$I^{\mu}(\hat{p}_{M_{1}},\hat{p}_{M_{2}}) = \int \frac{d^{4}k}{(2\pi)^{4}i} \Phi_{M_{1}}\left(-\left(k+w_{q_{1}c}p_{1}\right)^{2}\right) \Phi_{M_{1}}\left(-\left(k+w_{q_{1}c}p_{1}\right)^{2}\right) \times$$

$$\times \operatorname{Tr}\left\{i\gamma_{5}S_{q_{1}}\left(\hat{k}+\hat{p}_{1}\right)i\gamma_{5}S_{q_{2}}\left(\hat{k}+\hat{p}_{2}\right)\gamma^{\mu}\left(1-\gamma_{5}\right)S_{c}\left(\hat{k}\right)\right\},$$
(11)

где q₃ – с кварк;

q_{1,2} – кварки, образующие конечный мезон.

Дифференциальное сечение данного типа распадов имеет вид:

$$\frac{d\Gamma}{dt} = \frac{Br(D \to Mlv)}{\tau_D} = X \frac{G_F^2}{24\pi^3} \left| V_{cd(s)} \right|^2 m_D^2 \left| F_+(t) \right|^2 , \qquad (12)$$

где $X = \frac{1}{2}$ для π^0 -мезона в конечном состоянии и X = 1 во всех остальных случаях. В таблице 2 приведены полученные значения брэнчингов (в процентах).

Распад	КМКК	ΗΜχΤ[11]	LCSR [9]	Эксперимент
$D^+ \rightarrow \pi^0 e^+ \nu_e$	0,29	0,33	0,352+0,045	$0,372 \pm 0,0017$ [12]
			-0,038	0,350±0,00115 [4]
$D^+ \rightarrow \pi^0 \mu^+ \nu_{\mu}$	0,28		$0,349^{+0,043}_{-0,038}$	
$D^+ \to \overline{K}{}^0 e^+ v_e$	9,28	8,4	8,12 ^{+1,19} -1,08	8,73±0,19 [12]
$D^+ ightarrow \overline{K}^0 \mu^+ u_\mu$	9,02		$7,98^{+1,16}_{-1,06}$	8,72±0,19 [5]
$D^0 \rightarrow \pi^- e^+ v_e$	0,22	0,27	0,278 +0,035 -0,03	0,293±0,004 [12]
$D^0 \rightarrow \pi^- \mu^+ \nu_\mu$	0,28		0,275 +0,035 -0,03	0,272±0,0010 [4] 0,331±0,032 [3]
$D^0 \to K^- e^+ v_e$	3,63		3,43 ^{+0,47} -0,43	3,503±0,029 [12]
$D^0 \rightarrow K^- \mu^+ \nu_\mu$	3,53		$3,15^{+0,46}_{-0,42}$	3,413±0,0040 [6] 3,45±0,23 [3]
$D_s^+ \to K^0 e^+ v_e$	0,2		0,390 +0,074 -0,057	$0,39\pm0,09$ [8] $0,325\pm0.041$ [7]
$D_s^+ \to K^0 \mu^+ \nu_\mu$	0,2		0,383 ^{+0,072} -0,056	.,

Таблица 2 – Значения брэнчингов (в процентах)

Заключение. В рамках КМКК получены формфакторы полулептонных распадов $K \to \pi e v_e$. Изучены полулептонные распады $D^+ \to \pi^0 e^+ v_e, \pi^0 \mu^+ v_\mu, \overline{K}^0 e^+ v_e, \overline{K}^0 \mu^+ v_\mu$ и $D^0 \to \pi^- e^+ v_e, \pi^- \mu^+ v_\mu, K^- e^+ v_e, K^- \mu^+ v_\mu$, а также $D_s^+ \to K^0 e^+ v_e, K^0 \mu^+ v_\mu$.

Результаты расчетов в рамках точности модели согласуются с экспериментальными данными и оценками, полученными в других теоретических подходах. Исключение составляет только распад $D_s^+ \to K^0 e^+ v_e$, для которого значение брэнчинга оказалось заниженным, по сравнению с экспериментальным, практически в полтора раза. Хорошее согласие с экспериментальными данными и оценками, полученными в других теоретических подходах, означает, что в рамках данной модели возможно описать широкий круг явлений, связанный с физикой очарованных частиц, а именно, нелептонные распады D-мезонов, распады с η_e в конечном состоянии и многие другие.

Литература

1. Portoles J. Important rare kaon decays / J. Portoles // Nucl. Phys. Proc. Suppl. – 2012. – Vol. 273. – P. 254–259.

2. Komasubara T. K. Experiments with K–Meson Decays / T. K. Komasubara // Prog. Part. Nucl. Phys. – 2012. – Vol. 67. – P. 995–1018.

3. Measurement of $D^0 \rightarrow \pi lv(Klv)$. Form Factors and Absolute Branching Fractions / L. Widhalm [et al.] (Belle Collaboration) // Phys. Rev. Lett. – 2006. –Vol. 97. – P. 061804. – [hep-ex/0604049].

4. Measurement of the branching fraction for the semi-leptonic decay $D^{0(+)} \rightarrow \pi^{-(0)} \mu^+ \nu_{\mu}$ and test of lepton universality / M. Ablikim [et al.] (BESIII Collaboration) // Phys. Rev. Lett. – 2018. – Vol. 121. – P. 171803. – [arXiv:1802.05492].

5. Improved measurement of the absolute branching fraction of $D^+ \rightarrow \overline{K}^0 \mu^+ \nu_{\mu}$ / M. Ablikim [et al.] (BESIII Collaboration) // Eur. Phys. J. – 2016. – Vol. C76. – P. 369. – [arXiv:1605.00068].

6. Study of the $D^0 \rightarrow K^- \mu^+ \nu_{\mu}$ Dynamics and Test of Lepton Flavor Universality with $D^0 \rightarrow K^- l^+ \nu_l$ Decays / M. Ablikim [et al.] (BESIII Collaboration) // Phys. Rev. Lett. – 2019. – Vol. 122. – P. 011804. – [arXiv:1810.03127].

7. First Measurement of the Form Factors in $D_s^+ \to K^0 e^+ v_e$ and $D_s^+ \to K^{0^*} e^+ v_e$ Decays / M. Ablikim [et al.] (BESIII Collaboration) // Phys. Rev. Lett. – 2019. – Vol. 122(6). – P.061801.

8. Exclusive *D_s* semileptonic branching fraction measurements / J. Hietala, D. Cronin-Hennessy, T. Pedlar, I. Shipsey // Phys. Rev. – 2015. – Vol. D92. – P. 012009. – [arXiv:1505.04205].

9. Verma R. C. Decay constants and form factors of s-wave and p-wave mesons in the covariant light-front quark model / R. C. Verma // J. Phys. – 2012. –Vol. G39. – P. 025005. – [arXiv:1103.2973].

10. Fajfer S. Charm meson resonances in $D \rightarrow Plv_l$ decays / S. Fajfer, J. F. Kamenik // Phys. Rev. – 2005. – Vol. D71. – P. 014020. – [hep-ph/0412140].

11. Relativistic constituent quark model with infrared confinement / T. Branz [et al.] // Phys. Rev. -2010. -Vol. D81. -P.034010.

12. Particle Data Group / R. L. Workman [et al.] // Review of Particle Physics, PTEP. – 2022. – P. 083C01.