Секция 2 «Теория фундаментальных взаимодействий»

(электрослабые свойства микрочастиц, электродинамические и адронные процессы взаимодействия, астрофизика и космология)

Председатели: Тимошин Сергей Иванович, д-р физ.-мат. наук, профессор Андреев Виктор Васильевич, д-р физ.-мат. наук, профессор

С. Л. Авакян, Е. З. Авакян

Гомельский государственный технический университет имени П. О. Сухого, г. Гомель, Республика Беларусь

РАДИАЦИОННЫЕ РАСПАДЫ ЛЕГКИХ МЕЗОНОВ

Введение. Среди множества электрослабых процессов особый интерес для изучения структуры адронов представляют радиационные распады. В самом деле, поскольку лептоны не взаимодействуют сильно, они являются «идеальными зондами» адронной структуры. С этой точки зрения рассмотрим распады $\pi \rightarrow ev_e \gamma$ и $\pi \rightarrow ev_e e^+e^-$. Впервые распад $\pi \to ev_e \gamma$ наблюдался в 1963 году [1]. В девяностые годы прошлого столетия было получено много экспериментальных данных по этому распаду, однако общее число зарегистрированных событий составило около 1 300 и только в 2009 на экспериментах PSI (PIBETA), была достигнута статистика 65·10³ [2]. Наиболее общий обзор экспериментальной ситуации был сделан в работе [3]. Было предпринято много попыток теоретически описать проблемы, возникающие в данных распадах, начиная со всевозможных кварковых моделей и заканчивая киральными подходами [4-6]. Изучение данных распадов дает богатую информацию о внутренней структуре π – мезона. Традиционно, для описания слабых распадов из пяти основных вариантов взаимодействий – скалярного S, псевдоскалярного P, векторного V, аксиально-векторного A и тензорного – T, используют только V – A взаимодействие. В данной работе был вычислен параметр $\gamma = F_A(0) / F_V(0)$ для распада $\pi \to ev_e \gamma$. Причем параметр был вычислен как без учета промежуточных адронных состояний, так и с ними. Значение параметра γ без учета промежуточного $a_1(1260)$ оказалась равной $\gamma = 1$, что противоречит экспериментальным данным $\gamma = 0,469 \pm 0,935$ [7]. Последовательный учет промежуточных векторных и аксиально векторных мезонов привел к значению $\gamma = 0,537$, что хорошо согласуется с экспериментом. Адрон-кварковые взаимодействия будем описывать в рамках Модели Конфайнмированных Кварков (МКК) [8].

1. Распад $\pi \rightarrow ev_e \gamma$. Диаграммы, описывающие распад $\pi \rightarrow ev_e \gamma$, приведены на рисунке 1.

Рисунок 1 – Диаграммы, описывающие распад $\pi \rightarrow ev_e \gamma$

Различают две части амплитуды данного распада:

$$M = M_{IB} + M_{SD},,$$

где M_{IB} – структурно-независящая часть амплитуды: пион излучает позитрон и нейтрино через аксиально-векторный ток, а фотон испускается внешними заряженными частицами. Это «тривиальная» часть процесса в том смысле, что эффекты сильного взаимодействия отсутствуют, она вычисляется по обычным правилам КЭД;

 M_{SD} – структурно-зависящая часть амплитуды, определяемая векторным F_V и аксиально-векторным F_A форм-факторами.

Здесь проявляются сильные взаимодействия. Фотон излучается из промежуточного адронного состояния, генерируемого сильным взаимодействием внешнего адрона и кварков. Для описания этого сложного механизма требуется знание структуры адрона и динамики взаимодействия. В МКК структурно-зависящая часть амплитуды обычно представляется в виде:

$$M_{SD}(\pi \to e v_e \gamma) = -\frac{G_F}{\sqrt{2}} e V_{ud} l^{\mu}_{w} \varepsilon^{\nu}(\hat{q}) T^{\mu\nu}_{SD}(p,q),$$

где l^{μ}_{w} – слабый лептонный ток;

 $\varepsilon^{\nu}(\hat{q})$ – вектор поляризации γ -кванта.

$$T_{SD}^{\mu\nu}(p,q) = F_A(t) \Big[g^{\mu\nu} pq - p^{\mu} q^{\nu} \Big] - i F_V(t) \varepsilon^{\mu\nu\alpha\beta} p^{\alpha} q^{\beta},$$

где *р* – импульс *п*–мезона;

q – импульс γ –квант;

 $t = \left(p - q\right)^2.$

При вычислении амплитуды с учетом диаграмм, приведенных на рисунке 1 формфакторы $F_A(0)$ и $F_V(0)$ оказались равными:

$$F_{A}(0)=F_{V}(0)=\frac{2\Lambda_{u}\sqrt{h_{\pi}}}{3\pi}a(0),$$

где Λ_u – параметр, характеризующий область конфайнмента нестранных кварков;

*h*_π – константа взаимодействия π–мезона с кварками.

Видно, что параметр γ оказывается равным 1, что совпадает с результатом, полученным в обычных кварковых моделях, и противоречит имеющимся на сегодняшний день экспериментальным данным.

2. Учет промежуточного $a_1(1260)$ мезона. Учет промежуточного $a_1(1260)$ мезона приводит к появлению дополнительных диаграмм, приведенных на рисунке 2. Эти диаграммы дают вклад только в аксиальный форм-фактор $F_A(0)$.

Рисунок 2 – Диаграммы с учетом промежуточного $a_1(1260)$ мезона

Таким образом, $F_{A}(0)$ получен в виде:

$$F_{A}(0) = \frac{2\Lambda_{u}\sqrt{h_{\pi}}}{3\pi}a(0) \Big[1 - G_{a_{1}}(0)h_{a_{1}}\Big],$$

где $G_{a_1}(0)h_{a_1}$ – произведение значения пропагатора a_1 мезона на константу его взаимодействия с кварками. В однопетлевом приближении произведение $G_{a_1}(0)h_{a_1}$ имеет вид

$$G_{a_{1}}^{\mu\nu}(p^{2})h_{a_{1}} = \frac{1}{\Pi_{1A}(p^{2}) - \Pi_{1A}(m_{A}^{2})} \left[-g^{\mu\nu} + p^{\mu}p^{\nu} \frac{\Pi_{2A}(p^{2})}{\Pi_{1A}(p^{2}) - \Pi_{1A}(m_{A}^{2}) + p^{2}\Pi_{2A}(p^{2})} \right],$$

где $\Pi_{1A}(p^2), \Pi_{2A}(p^2)$ – части поляризационного оператора аксиального мезона. Что приводит к изменению аксиального формфактора $F_A(0)$.

$$F_V(0) = 0,041, F_A(0) = 0,022.$$

В результате, параметр γ оказался равным $\gamma = 0,537$, что неплохо согласуется с экспериментальными данными $\gamma_{3KC} = 0,469 \pm 0,935$. Таким образом, оказалось, что влияние a_1 мезона существенно проявляется в слабом радиационном распаде π -мезона. Учет дополнительных диаграмм с промежуточным аксиально-векторным мезоном привел к заметному изменению параметра γ .

Заключение. Изучены радиационные распады пиона $\pi \to ev_e \gamma$. Получены значения параметра $\gamma = F_A(0)/F_V(0)$. Показано, что учет промежуточных аксиальных состояний в амплитуде распада $\pi^+ \to e^+ v_e \gamma$ приводит к значению параметра γ , отличному от 1, что согласуется с имеющимися экспериментальными данными.

Литература

1. Further Measurement on the Decay $\pi^+ \rightarrow e^+ v_e \gamma$ / P. Depommier, J. Heintze, C. Rubbia, V. Soergel // Phys.Lett. – 1963. – Vol.7. – P. 285–287.

2. New Precise Measurement of the Pion Weak Form Factors in $\pi^+ \rightarrow e^+ v_e \gamma$ Decays / M. Bychkov [et al.] (PIBETACollab.) // Phys. Rev. Lett. – 2009. – Vol. 103. – P. 051802(4).

3. Исследование редких распадов пионов на спектрометре PIBETA / Д. Почанич [и др.] // Письма в ЭЧАЯ. – 2018. – Т. 15, № 6 (218). – С. 481–496.

4. Bijnens, J. $\pi \rightarrow l\nu\gamma$ Form Factorsat Two Loop / J. Bijnens, P. Talavera // Nucl. Phys. B. - 1997. - Vol. 489. - P. 387-404.

5. Geng, C. Q. Axial VectorForm Factorsfors $K_{12\gamma}$ and $\pi_{12\gamma}$ at $O(p^6)$ in Chiral Perturbation

Theory / C. Q. Geng, I-Lin Ho, T. H. Wu // Nucl. Phys. B. – 2004. – Vol. 684. – P. 281–317.

6. Pichl, H. On the Radiative Decay / H. Pichl, R. Unterdorfer // Eur. Phys. J. C. - 2008. - Vol. 55. - P. 273–283.

7. PDG Prog.Theor.Exp.Phys. – 2022 – 083C01.

8. Efimov, G. V. The Quark Confinement Model of Hadrons / G. V. Efimov, M. A. Ivanov. – London: IOP Publishing Ltd, 1993.

С. Л. Авакян, Е. З. Авакян

Гомельский государственный технический университет имени П. О. Сухого, г. Гомель, Республика Беларусь

ПОЛУЛЕПТОННЫЕ РАСПАДЫ МЕЗОНОВ

Введение. Мезоны являются простейшими двухкварковыми системами, поэтому их изучение представляется крайне важным, для решения упомянутых выше проблем. Задача изучения полулептонных распадов мезонов остается актуальной на протяжении многих десятилетий. Это связано с тем, что в указанных распадах тесно сплетены слабые и сильные взаимодействия кварков. Следует отметить, что при полулептонных распадах появление одного (и только одного) адрона в конечном состоянии порождает более богатую феноменологию по сравнению с чисто лептонными распадами. В то же время, описание полулептонных распадов, в отличие от нелептонных, не требует дополнительных предположений о взаимосвязи сильных и слабых взаимодействий на малых расстояниях.

Каонные распады рассматриваются в целом ряде обзоров, например, [1]. Экспериментальное изучение этих распадов ведется рядом экспериментальных групп. (BNL KEK – JAEA IHEP, Protvino INFN, Frascati) [2]. В последнее время мезонные системы, содержащие «тяжелые» кварки привлекают большое внимание. Это связано с появлением достаточного количества экспериментальных данных, полученных, Belle [3], BESIII [4–7] и CLEO [8].

Трудность теоретического изучения указанных мезонных систем заключается в том, что для описания D мезонов невозможно применить, ни киральный предел ($m_c \rightarrow 0$), ни эффективную теорию ($m_c \rightarrow \infty$). В последнее время интенсивно развиваются теоретические подходы, например, основанных на применении кварковых моделей [9], эффективной киральной теории [10] и ряде других. В данной работе адронные матричные элементы вычисляются в Ковариантной Модели Конституэнтных Кварков (КМКК) [11].

1. Матричные элементы полулептонных распадов мезонов. Матричный элемент полулептонного распада мезона имеет вид: