СЕКЦИЯ МЕХАНИКО-ТЕХНОЛОГИЧЕСКАЯ

ОПРЕДЕЛЕНИЕ ИНТЕНСИВНОСТИ КОНТАКТНЫХ СДВИГОВЫХ ДЕФОРМАЦИЙ В ОЧАГЕ ДЕФОРМАЦИИ ПРИ ПРОКАТКЕ

Шишков С.В.

Гомельский государственный технический университет имени П.О. Сухого

Анализ контактных деформаций при прокатке особенно актуален для процессов получения биметаллов методом совместной пластической деформации в прокатных валках. Для качественной связи между плакирующим и основным металлами необходимо обеспечить максимально возможные сдвиговые деформации в зоне их соединения. При плакировании тонкими слоями сдвиговую деформацию можно определять на контакте металла с валками.

Для определения величины сдвиговой деформации на контакте металла с валком была получена зависимость:

$$\gamma_{i} = \gamma_{i}^{om} + \gamma_{i}^{on};$$

$$\gamma_{i}^{om} = \frac{2}{3} \sqrt{4 \left(E_{y}^{om}\right)^{2} + \frac{3}{2} \left(\gamma_{zx}^{om}\right)^{2}}; \gamma_{i}^{on} = \frac{2}{3} \sqrt{4 \left(E_{x}^{on}\right)^{2} + \frac{3}{2} \left(\gamma_{zx}^{on}\right)^{2}};$$

$$\gamma_{ix}^{on} = \frac{Sh}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left[1 - \frac{\arcsin \frac{x}{R}}{\alpha_{H}}\right] + \frac{1}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left[\sin \frac{C}{2} - \frac{D}{2} \cos \frac{C}{2}\right];$$

$$\gamma_{ix}^{om} = (1 - S_{H}) \frac{1}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left[\sin \frac{B}{2} - \frac{A}{2} \cos \frac{B}{2} + \frac{1}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left(\alpha - \alpha_{H}\right) \left[\sin \frac{B}{2} - \frac{A}{2} \cos \frac{B}{2}\right]\right];$$

$$E_{y}^{om} = \left(1 - S_{H}\right) \frac{1}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left[\cos \frac{B}{2} - \frac{A}{2} \sin \frac{B}{2} + \frac{1}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left(\alpha - \alpha_{H}\right) \left[\cos \frac{B}{2} - \frac{A}{2} \sin \frac{B}{2}\right];$$

$$E_{y}^{om} = \left(1 - S_{H}\right) \frac{1}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left[\cos \frac{B}{2} - \frac{A}{2} \sin \frac{B}{2} + \frac{1}{\sqrt{1 - \frac{x^{2}}{R^{2}}}} \left(\alpha - \alpha_{H}\right) \left[\cos \frac{B}{2} - \frac{A}{2} \sin \frac{B}{2}\right];$$

$$A = \alpha - \arcsin \frac{x}{R}$$
; $B = \alpha + \arcsin \frac{x}{R}$; $C = \alpha_H + \arcsin \frac{x}{R}$; $D = \alpha_H - \arcsin \frac{x}{R}$,

где ү, - интенсивность сдвиговой деформации;

 $\gamma_i^{om}, \gamma_i^{om}$ - интенсивность сдвиговой деформации в зонах отставания и опережения;

 γ_{zx}^{on} , γ_{zx}^{onn} - относительные сдвиги в зонах опережения и отставания;

 E_{x}^{on} , E_{y}^{om} - относительные удлинения в зонах опережения и отставания;

 $S_{\!\scriptscriptstyle H}$ -отставание; $S_{\!\scriptscriptstyle 0}$ - опережение; R - радиус валков; α - угол прокатки; $\alpha_{\scriptscriptstyle H}$ -нейтральный угол.

Данная зависимость устанавливает связь между величиной сдвиговой деформации в зоне контакта и основными параметрами процесса прокатки.

Анализ этой зависимости позволяет выбрать оптимальные параметры процесса прокатки для обеспечения максимальной сдвиговой деформации и, соответственно, лучшего качества соединения металлов.

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ РАССТОЯНИЯ ОТ ВЕРШИНЫ СОРТИРОВОЧНОЙ ГОРКИ ДО ПЕРВОЙ РАЗДЕЛИТЕЛЬНОЙ СТРЕЛКИ ОТ РАЗЛИЧНЫХ ФАКТОРОВ

Ванюк А.П., Маслова Н.А.

Белорусский государственный университет транспорта, Гомель

Участок от вершины сортировочной горки до первой разделительной стрелки или первой тормозной позиции является наиболее ответственным, определяющим производительность горки и безопасность роспуска. На практике именно на этот участок приходится большое количество браков и единственной оперативной мерой его уменьшения является снижение скорости роспуска, что оказывает негативное влияние на перерабатывающую способность горки. Такое положение дел дает основание для проведения комплексной оптимизации плана и профиля сортировочной горки и, в частности, таких параметров, как расстояние от вершины горки до первой разделительной стрелки, величины уклонов первого и второго скоростных участков. Следует отметить, что данный вопрос в теории расчета сортировочных горок методически не обработан.

В докладе представлены и исследованы зависимости:

- минимального расстояния от вершины горки до первой разделительной стрелки от разности точек отрыва хорошего и плохого бегунов в момент нахождения их на вершине горки;
- максимального расстояния от вершины горки до первой разделительной стрелки от величин уклонов первого и второго скоростных участков для двух конструкционно-различных планов головной части горочной горловины.

По результатам исследований сделаны выводы:

1. Размещать первый разделительный стрелочный перевод относительно вершины горки следует не на минимальном, а на максимально возможном расстоянии. Это повышает перерабатывающую способность горки,