- Электромеханические преобразователи энергии : материалы VII Междунар. науч.-техн. конф., Томск, 14–16 окт. 2015 г. / Том. политехн. ун-т. Томск : Изд-во Том. политехн. ун-та, 2015. С. 70–75.
- 5. Дорощенко, И. В. Механические характеристики автоматизированного электромеханического испытательного стенда на основе асинхронно-вентильного каскада/ И. В. Дорощенко // Вестник Гомельского государственного технического универ-та имени П. О. Сухого. 2011. № 2. С. 68–72.
- 6. Simulation model of an asynchronous machine with wound rotor in matlab simulink / I. Doroshchenko, V. Zakharenko, M. Pohulayev, N. Miftakhova // E3S Web of Conferences 288, 01110 (2021) SUSE-2021. DOI 10.1051/e3sconf/202128801110

УДК 62-519

ВЫБОР СИСТЕМЫ УПРАВЛЕНИЯ РОБОТОТЕХНИЧЕСКОГО КОМПЛЕКСА ДЛЯ ИНТЕГРИРОВАНИЯ С ОБРАБАТЫВАЮЩИМ ЦЕНТРОМ

М. В. Матвеенцева

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Рассмотрен выбор системы управления для робототехнического комплекса, состоящего из промышленного робота РГШ-40.02 и обрабатывающего центра ГДС 500. Установлено, что данное оборудование является совместимым и может быть объединено общей системой управления Siemens Simatic S7-1500.

Ключевые слова: система управления РТК, промышленный робот РГШ-40.02, Sinumerik, обрабатывающий центр ГДС 500.

SELECTION OF THE CONTROL SYSTEM OF THE ROBOTIC COMPLEX FOR INTEGRATION WITH THE PROCESSING CENTER

M. V. Matveyentsava

Sukhoi State Technical University of Gomel, the Republic of Belarus

In this paper, the choice of a control system for a robotics complex consisting of an industrial robot RGSH-40.02 and a processing center GDS 500 is considered. It has been established that this equipment is compatible and can be combined with a common Siemens Simatic S7-1500 control system.

Keywords: RTC control system, industrial robot RGSH-40.02, Sinumerik, processing center GDS 500.

Роботизация производственных процессов является одним из ключевых направлений развития современной промышленности. Внедрение робототехнических комплексов (РТК) позволяет повысить производительность, качество и гибкость производства, а также сократить затраты на рабочую силу. Однако эффективная работа РТК невозможна без грамотного проектирования системы управления.

Для РТК выбираем централизованное или сетевое управление. Основная разница между ними заключается в архитектуре и распределении функций.

Централизованное управление осуществляется из единого центрального контроллера (ПЛК). Он обрабатывает всю информацию, принимает решения и формирует управляющие воздействия для всех компонентов комплекса. Связь между центральным контроллером и исполнительными устройствами (роботом, ОЦ) осуществляется по выделенным линиям.

Преимуществами являются простота реализации и программирования, лучшая синхронизация и координация работы компонентов, централизованный мониторинг и управление всем комплексом.

Недостатками являются высокая нагрузка на центральный контроллер, уязвимость к отказам центрального контроллера, ограниченная гибкость и возможность расширения.

При сетевом (распределенном) управлении каждый компонент комплекса (робот, ОЦ) имеет свой локальный контроллер. Они обрабатывают информацию и управляют своими устройствами. Контроллеры взаимодействуют между собой по промышленной сети (Ethernet, Profinet, Modbus и др.). Координация работы всего комплекса осуществляется через обмен данными между контроллерами.

Преимуществами являются более высокая отказоустойчивость, возможность расширения и модернизации системы, распределение вычислительной нагрузки.

Недостатками являются более сложная реализация и программирование, необходимость надежной промышленной сети, более сложная синхронизация работы компонентов.

Выбор между централизованным или сетевым управлением зависит от требований к производительности, гибкости, надежности и масштабируемости конкретного робототехнического комплекса.

Исходя из того, что промышленный робот РГШ-40.02 [2] совместим с системами управления ПРУ-1 и Siemens Sinumerik, а обрабатывающий центр ГДС 500 [4] использует систему управления Sinumerik выбираем Siemens Simatic S7-1500 [1] в качестве централизованной системы управления комплексом.

Siemens Simatic S7-1500 — это высокопроизводительная серия ПЛК, которая идеально подходит для управления сложными промышленными процессами, включающими роботов и станки с ЧПУ.

Sinumerik — это собственная система ЧПУ от Siemens, которая хорошо интегрируется с ПЛК Simatic S7-1500. Это обеспечит надежное и эффективное управление обрабатывающим центром ГДС 500. Для управления промышленным роботом РГШ-40.02, Simatic S7-1500 также предоставляет возможность интеграции с системой ПРУ-1 через соответствующие функциональные блоки и программное обеспечение.

Simatic S7-1500 поддерживает широкий спектр коммуникационных протоколов, включая Profinet, Profibus, OPC UA, что обеспечит надежную связь между ПЛК, роботом и обрабатывающим центром.

Программное обеспечение Totally Integrated Automation Portal (TIA Portal) от Siemens упростит интеграцию, программирование и настройку всего робототехнического комплекса в единой среде.

Таким образом, использование Siemens Simatic S7-1500 в качестве централизованной системы управления позволит эффективно интегрировать промышленный робот РГШ-40.02 и обрабатывающий центр ГДС 500 в единый робототехнический комплекс с надежным и гибким управлением.

Рассмотрим технические характеристики Siemens Simatic S7-1500 [3].

В качестве процессорных модулей имеется широкая линейка с различными характеристиками по производительности, объему памяти и количеству І/О-точек;

Например, CPU 1515-2 PN:

- производительность до 120 мкс/логическая операция;
- 1,5 Мб памяти программ, 5 Мб памяти данных;
- до 1024 точек дискретного ввода/вывода;
- встроенные интерфейсы Profinet/Ethernet, Profibus;

- возможность расширения модулями ввода/вывода.

Модули ввода/вывода:

- широкий выбор модулей дискретного и аналогового ввода/вывода;
- модули для подключения датчиков, исполнительных механизмов, сигнальной аппаратуры;
- например, модуль SM 1523 с 32 дискретными входами и 32 дискретными выходами;
 - возможность горячей замены модулей без остановки процесса.

Коммуникационные возможности:

- встроенные интерфейсы Profinet (до 4 портов), Profibus, PtP, Industrial Ethernet;
 - поддержка протоколов Modbus TCP/RTU, OPC UA, EtherNet/IP;
 - обмен данными с HMI-панелями, SCADA-системами, ПК.

Функции управления:

- встроенные библиотеки для управления приводами, позиционирования, регулирования;
- поддержка технологических функций, таких как управление перемещениями, синхронизация, контроль скорости и крутящего момента;
- возможность интеграции систем управления станками (NC, CNC) и роботами (KUKA, Yaskawa и др.).

Программное обеспечение:

- единая среда инженерного проектирования TIA Portal;
- интуитивно понятное программирование в соответствии со стандартами IEC 61131-3;
 - диагностика, мониторинг и визуализация процессов.

Надежность и безопасность:

- степень защиты IP20, устойчивость к вибрациям и ударам;
- возможность резервирования СРU, сетей, питания;
- встроенные функции обеспечения безопасности (Safety Integrated).

В результате данного исследования можно заключить, что использование Siemens Simatic S7-1500 в качестве централизованной системы управления и программного обеспечения Totally Integrated Automation Portal (TIA Portal) от Siemens является наиболее оптимальным решением для управления робототехническим комплексом, представленным в виде промышленного робота РГШ-40.02 и обрабатывающего центра ГДС 500.

Автор выражает признательность научному руководителю канд. техн. наук доц. З. Я. Шабакаевой за оказанную помощь при проведении данного исследования.

Литература

- 1. Дьяконов, В. П. Siemens Simatic S7-1500. Программирование, проектирование, конфигурирование / В. П. Дьяконов. Москва : ДМК Пресс, 2017. 832 с.
- 2. Промышленные роботы РГШ-40.02: техническое описание и инструкция по эксплуатации. Москва: ВНИИТЭМР, 2016. 78 с.
- 3. Siemens Sinumerik S7-1500 sl / S7-1500: руководство по эксплуатации. Мюнхен : Siemens AG, 2020. 1265 с.
- 4. Обрабатывающий центр ГДС 500: техническое описание и инструкция по эксплуатации. Санкт-Петербург: ГДС, 2018. 112 с.