УДК 62-83-52

СИНТЕЗ МОДАЛЬНОГО РЕГУЛЯТОРА МОМЕНТА ИНВАРИАНТНОЙ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ СТЕНДА НА ОСНОВЕ АСИНХРОННО-ВЕНТИЛЬНОГО КАСКАДА

И. В. Дорощенко

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

С использованием функциональной схемы асинхронно-вентильного каскада произведен синтез модального регулятора момента электропривода на основе асинхронно-вентильного каскада, обеспечивающего инвариантность момента к скорости вращения.

Ключевые слова: асинхронно-вентильный каскад, модальный регулятор, синтез регулятора момента, моделирование электропривода.

SYNTHESIS OF MODAL TORQUE REGULATOR OF INVARIANT AUTOMATIC CONTROL SYSTEM STAND BASED ON ASYNCHRONOUS-VALVE CASCADE

I. V. Doroshchenko

Sukhoi State Technical University of Gomel, the Republic of Belarus

Using the functional diagram of the asynchronous-valve cascade, a synthesis of a modal torque controller of an electric drive based on an asynchronous-valve cascade was produced, ensuring the invariance of the torque to the rotation speed.

Keywords: modal controller, synthesis of a torque controller, modeling of an electric drive.

Как известно, при разработке и наладке системе автоматического управления (САУ) электроприводов (ЭП) нужно учитывать свойства синтезируемых регуляторов, так как различным типам регуляторов вносят в САУ свои характерные динамические и статические показатели [1, 2]. Применяя тот или иной закон управления, а также различные варианты вентильных преобразователей и схемных реализаций асинхронно-вентильного каскада (АВК) можно добиться различных энергетических показателей [3–6].

Целью исследований является синтез модального регулятора момента инвариантной к скорости вращения САУ для нагрузочного стенда на основе ABK.

Используя структурную схему нагрузочной части нагрузочного стенда на основе ABK [1, 2] (рис. 1), получим выражения для синтеза параметров модального регулятора момента инвариантной САУ ЭП на основе ABK.

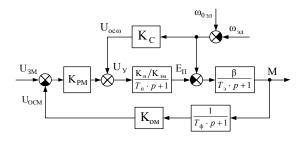


Рис. 1. Структурная схема инвариантной к скорости вращения САУ АВК

На структурной схеме (рис. 1) обозначено: $K_{\rm PM}$ — коэффициент передачи регулятора момента; $T_{_{\rm II}}$, $K_{_{\rm II}}$ — постоянная времени и коэффициент передачи управляемого преобразователя в роторной цепи; $T_{_{\rm I}}=\frac{L_{_{\rm I}}L_{_{\rm I}\Sigma}-L_{_{\rm I}2}^2}{R_{_{\rm I}\Sigma}L_{_{\rm I}}}$ — эквивалентная постоянная

времени; $K_{_{\mathfrak{IM}}} = \frac{L_{_{12}}}{L_{_{1}}} \cdot \frac{U_{_{1m}}'}{\omega_{_{\!_{\mathfrak{IM},H}}}}$ — коэффициент передачи; $\beta = \frac{p_{_{\mathfrak{I}}}}{R_{_{2\Sigma}}} K_{_{\mathfrak{IM}}}^2$ — модуль жесткости линеаризованной механической характеристики АВК; $K_{_{\mathfrak{IM}}}$ — коэффициент передачи усилителя в канале обратной связи по моменту; $T_{_{\mathfrak{IM}}}$ — постоянная времени датчика момента и фильтра в канале обратной связи; $K_{_{\mathfrak{I}}}$ — коэффициентом передачи усилителя в канале обратной связи по скорости.

В качестве переменных состояния принимаем изменение скорости $\left(\Delta\omega=\omega_{_{0\,\text{зл}}}-\omega_{_{\text{зл}}}\right)$ и значение момента М. Выражение для замкнутого ЭП, будет иметь вид:

$$M \left[T_{3} T_{\Pi} T_{\phi} p^{3} + \left(T_{\Phi} \left(T_{\Pi} + T_{3} \right) + T_{3} T_{\Pi} \right) p^{2} + \left(T_{\Pi} + T_{3} + T_{\phi} \right) p + 1 + K_{oM} \beta \frac{K_{PM} K_{\Pi}}{K_{SM}} \right] =$$

$$= \beta \left(T_{\phi p} + 1 \right) \left[-\Delta \omega \left(T_{\Pi} p + 1 \right) + \frac{K_{\Pi}}{K_{SM}} \left(U_{SM} K^{PM} + K_{c} \Delta \omega \right) \right]. \tag{1}$$

Из выражения (1) получим характеристическое уравнение

$$D_{0}p + D_{1}p + D_{2}p + D =$$

$$= \beta \left(T_{\phi}p + 1 \right) \left[-\Delta \omega \left(T_{\Pi}p + 1 \right) + U_{3M} \frac{U_{PM}K_{\Pi}}{K_{9M}} + K_{c} \frac{K_{\Pi}}{K_{9M}} \Delta \omega \right], \tag{2}$$

где
$$D_0 = T_9 T_\Pi T_\Phi = d_0 T; \ D_1 = T_\Phi (T_\Pi + T) + T_9 T_\Pi = d_1 T_\Phi + d_0; D_2 = (T_\Pi + T_9 + T_\Phi) = d + T_\Phi;$$
 $D_3 = 1 + K_{\scriptscriptstyle \text{OM}} K_{\scriptscriptstyle \text{PM}} \frac{\beta K_{\scriptscriptstyle \Pi}}{K_{\scriptscriptstyle \text{PM}}} = d_2 + K_{\scriptscriptstyle \text{OM}} K_{\scriptscriptstyle \text{PM}} \frac{\beta K_{\scriptscriptstyle \Pi}}{K_{\scriptscriptstyle \text{PM}}}.$

Желаемые показатели качества характеристического уравнения определяли, исходя из нормированного уравнения третьего порядка (по Баттерворту), при условии минимума интеграла. Определим базовую частоту (среднегеометрический корень):

$$\omega_{6} = \frac{D_{1}}{D_{0}c_{1}} = \frac{1}{2} \left(\frac{T_{\phi} (T_{\pi} + T_{3}) + T_{3}T_{\pi}}{T_{3}T_{\pi}T_{\phi}} \right).$$
 (3)

Определяем параметры модального регулятора момента из системы уравнений (4):

$$\begin{cases} D_{3} = D_{0}c_{3} \left(\omega_{6}\right)^{3}; \\ c_{3} = 1; \\ D_{3} = 1 + K_{\text{om}} \beta \frac{K_{\text{PM}}K_{\Pi}}{K_{\text{sm}}}. \end{cases}$$
(4)

Из системы (4) получаем выражение для произведения коэффициента обратной связи и регулятора момента:

$$K_{\text{\tiny OM}}K_{\text{\tiny PM}} = \left(D_0 \left(\omega_6\right)^3 - 1\right) \frac{K_{\text{\tiny PM}}}{\beta K_{\text{\tiny II}}}.$$
 (5)

Из уравнения статической характеристики замкнутого ЭП на основе АВК, определяем коэффициент передачи усилителя в канале обратной связи по скорости:

$$K_{\rm c} = \frac{K_{\rm \tiny 3M}}{K_{\rm \tiny II}}.$$
 (6)

Для обеспечения заданного значения момента инвариантной САУ по управлению, необходимо, чтобы выполнялось равенство

$$\frac{M_{\rm H}}{U_{\rm MM,H}} = \frac{\beta K_{\rm PM} K_{\rm II}}{K_{\rm SM} + K_{\rm OM} K_{\rm PM} \beta K_{\rm II}},\tag{7}$$

где $M_{_{\mathrm{H}}}, U_{_{_{\mathrm{3MH}}}}$ – номинальные значения момента и сигнала задания момента.

Подставив в (7) уравнение (5), выразим значение регулятора момента $K_{\rm PM}$:

$$K_{\text{PM}} = \frac{M_{\text{H}}}{U_{_{\text{3M.H}}}} \frac{K_{_{\text{3M}}} D_0 \left(\omega_{_{0}}\right)^{3}}{\beta K_{_{\Pi}}} = \left[\frac{\left(T_{_{\phi}} \left(T_{_{\Pi}} + T_{_{3}}\right) + T_{_{3}} T_{_{\Pi}}\right)^{3}}{8 \left(T_{_{3}} T_{_{\Pi}} T_{_{\phi}}\right)^{2}} - 1\right] \frac{M_{_{H}} K_{_{\text{3M}}}}{U_{_{\text{3M,H}}} \beta K_{_{\Pi}}}.$$
 (8)

Используя выражения (5) и (8), получим выражение для определения коэффициента передачи усилителя в канале обратной связи по моменту при модальном регуляторе:

$$K_{_{\text{OM}}} = \frac{U_{_{_{3\text{M.H}}}}}{M_{_{\text{H}}}} \frac{\left(D_{_{0}}\left(\omega_{_{6}}\right)^{3} - 1\right)}{D_{_{0}}\left(\omega_{_{6}}\right)^{3}} = \frac{U_{_{_{3\text{M.H}}}}}{M_{_{\text{H}}}} \left[1 - \frac{8\left(T_{_{3}}T_{_{\Pi}}T_{_{\phi}}\right)^{2}}{\left(T_{_{\phi}}\left(T_{_{\Pi}} + T_{_{9}}\right) + T_{_{3}}T_{_{\Pi}}\right)^{3}}\right]. \tag{9}$$

Таким образом, полученные выражения (6), (8), (9) будут определять значения параметров модального регулятора момента инвариантной САУ ЭП на основе АВК. Данную методику синтеза можно использовать при проектировании и наладке инвариантных к скорости вращения САУ ЭП на основе АВК.

Литература

- 1. Дорощенко, И. В. Динамика инвариантного испытательного стенда на основе асинхронновентильного каскада / И. В. Дорощенко, В. С. Захаренко // Известия Томского политехнического университета. 2013. Т. 322, № 4. С. 25–33.
- 2. Дорощенко, И. В. Математическая модель нагрузочной части испытательного стенда инвариантного к скорости вращения на основе асинхронно-вентильного каскада / И. В. Дорощенко, В. С. Захаренко, В. А. Савельев // Вестник Гомельского государственного технического университета имени П. О. Сухого. − 2013. № 3. С. 63–72.
- 3. Дорощенко, И. В. Исследование гармонического состава тока асинхронно-вентильного каскада / И. В. Дорощенко, М. Н. Погуляев, В. С. Захаренко // Вестник Гомельского государственного технического университета имени П. О. Сухого. 2015. № 1. С. 51–57.
- 4. Дорощенко, И. В. Электромагнитная совместимость электромеханического испытательного стенда на основе асинхронно-вентильного каскада / И. В. Дорощенко //

- Электромеханические преобразователи энергии : материалы VII Междунар. науч.-техн. конф., Томск, 14–16 окт. 2015 г. / Том. политехн. ун-т. Томск : Изд-во Том. политехн. ун-та, 2015. С. 70–75.
- 5. Дорощенко, И. В. Механические характеристики автоматизированного электромеханического испытательного стенда на основе асинхронно-вентильного каскада/ И. В. Дорощенко // Вестник Гомельского государственного технического универ-та имени П. О. Сухого. 2011. № 2. С. 68–72.
- 6. Simulation model of an asynchronous machine with wound rotor in matlab simulink / I. Doroshchenko, V. Zakharenko, M. Pohulayev, N. Miftakhova // E3S Web of Conferences 288, 01110 (2021) SUSE-2021. DOI 10.1051/e3sconf/202128801110

УДК 62-519

ВЫБОР СИСТЕМЫ УПРАВЛЕНИЯ РОБОТОТЕХНИЧЕСКОГО КОМПЛЕКСА ДЛЯ ИНТЕГРИРОВАНИЯ С ОБРАБАТЫВАЮЩИМ ЦЕНТРОМ

М. В. Матвеенцева

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Рассмотрен выбор системы управления для робототехнического комплекса, состоящего из промышленного робота РГШ-40.02 и обрабатывающего центра ГДС 500. Установлено, что данное оборудование является совместимым и может быть объединено общей системой управления Siemens Simatic S7-1500.

Ключевые слова: система управления РТК, промышленный робот РГШ-40.02, Sinumerik, обрабатывающий центр ГДС 500.

SELECTION OF THE CONTROL SYSTEM OF THE ROBOTIC COMPLEX FOR INTEGRATION WITH THE PROCESSING CENTER

M. V. Matveyentsava

Sukhoi State Technical University of Gomel, the Republic of Belarus

In this paper, the choice of a control system for a robotics complex consisting of an industrial robot RGSH-40.02 and a processing center GDS 500 is considered. It has been established that this equipment is compatible and can be combined with a common Siemens Simatic S7-1500 control system.

Keywords: RTC control system, industrial robot RGSH-40.02, Sinumerik, processing center GDS 500.

Роботизация производственных процессов является одним из ключевых направлений развития современной промышленности. Внедрение робототехнических комплексов (РТК) позволяет повысить производительность, качество и гибкость производства, а также сократить затраты на рабочую силу. Однако эффективная работа РТК невозможна без грамотного проектирования системы управления.

Для РТК выбираем централизованное или сетевое управление. Основная разница между ними заключается в архитектуре и распределении функций.

Централизованное управление осуществляется из единого центрального контроллера (ПЛК). Он обрабатывает всю информацию, принимает решения и формирует управляющие воздействия для всех компонентов комплекса. Связь между центральным контроллером и исполнительными устройствами (роботом, ОЦ) осуществляется по выделенным линиям.