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In this work the meshless backward substitution method is proposed for the first time to solve
the fourth-order plate bending vibration problems. The numerical solution consists of approxima-
tion from the boundary conditions and the revised basis functions which satisfying the homogene-
ous conditions with weighted parameters which are obtained from the governing equations by
the collocation method. Then the key issues are the organization of initial approximation and
the revised basis function derived from the traditional basis functions. To demonstrate the accuracy
and validity of the proposed method, several numerical examples are conducted and compared
with popular methods in literature. The obtained results from numerical experiments confirm
the potential of the proposed method in terms of both accuracy and efficiency.
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C. 10. Peyrckmii

HUncmumym npobarem mawunocmpoernus umenu A. I1. [loocoprozco
HAH Vkpaunul, 2. Xapbkos

OmmeyeHno, umo enepavie NPeoiodNcer Memood 0OpamHou beccemoyHolu NOOCMAHOBKU Ol
peuwenus 3a0ay Konebanuil uzeuda nIacmunbl Yemeepmozo nopaoka. Qucnennoe pewienue cocmo-
Um u3 anupPoOKCUMAYUU C YYemoM SPAHUYHLIX YCIOGUU U NepecMOMPEHHbIX OA3UCHBIX QYHKYUI,
KOmopbwle YO081emeopsaom 0OHOPOOHBIM YCIOBUAM C 8ECOBbIMU NAPAMEMPAMU, BbIBEOCHHbIMU U3
VAPAGASIOWUX YPAGHEHUU MemodoMm Kookayuu. Kiouegpimu gonpocamu AGIAI0OMCI OP2aHU3AYUS
HAYANbHO20 NPUOTUNCEHUSL U NEPECMOMPEHHAs OA3UCHAS YHKYUS, NOTYYEHHASA U3 MPAOUYUOHHBIX
bazucuvix Qyukyuil. s demoHcmpayuyu moyHocmu U 000CHOBAHHOCIU NPediiacaemoc0 Memood
NpUEEOEHO HEeCKOIbKO YUCTEHHbIX NPUMEPO8 U NPOBEOEHO CPABHEHUe C NONYISAPHLIMU Memooamu
6 aumepamype. [Ipedcmagnennvie pe3yibmamvl YUCIEHHBIX IKCNEPUMEHMOE NOOMEEPIHCOAIOm
ROMeHYUaL npedazaemMo20 Memood ¢ MoyKU 3peHUsi Kak MmoYHOCImuU, max u 9¢hgexmueHocmu.

KaroueBsble cioBa: GecceTOYHBIN METOJl, U3TUOHBIE KOJeOaHMsI TUTACTHHBI, pajuaibHas 0a-
3ucHas (YHKIIMS, METOJ 00paTHOM MOJACTaHOBKH.

Introduction. Plate structures, serving as fundamental components in various engi-
neering fields such as aerospace, marine engineering, civil construction, and industrial sec-
tors, play a pivotal role and find numerous applications. As for the solution to these prob-
lems, conventional and popular methodologies come to the forefront, such as the finite
element method, finite difference method, boundary element method, finite volume
method. Recent decades have witnessed remarkable developments in meshless or meshfree
methods such as smooth particle dynamics, method of particular solutions, and methods
based on radial basis functions. The utilization of radial basis functions was introduced by
Kansa for the solutions of partial differential equations. Reutskiy introduced a new method
called the backward substitution method (BSM) for addressing multi-node problems.
The conventional approach of the BSM approach involves transforming the original prob-
lem into Laplace equations and then applying the meshless method of fundamental solu-
tions to solve the corresponding equations. However, there is a critical limitation in this
approach, especially when dealing with real-application problems in anisotropic and inho-
mogeneous media. To overcome this limitation and extend the application of traditional
BSM, an improved version has been proposed. The solution process begins with an initial
approximation from boundary conditions which serves as the foundation for deriving
the primary solution. The final approximation is obtained by combining the elementary
approximation, the traditional basis function, and their associated correction functions.
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In this paper, we further extend this method for the first time to solve the fourth-order
plate bending vibration problems. We will provide detailed explanations of the boundary
conditions approximation and revised basis function tailored to the specific problems under
consideration. To validate the accuracy and effectiveness of this approach, several examples
in regular and irregular domains have been performed and the results are rigorously com-
pared with existing popular methods in literature.

Problem definition. In general, according to the principles of thin plate theory,
the governing equation for plate bending vibration problem under external loading ¢(x)

can be simplified as below:
VAw(X) + w(x) = p(x), x €Q,

with w(x) represents the deflection of the middle surface of the plate, p(x)= %, and

A represents the types of the plate where

A =0,
applies to the Kirchhoff plate, and
Pzt
D

applies to the Winkler plate, with %, representing the foundation stiffness. The plate
flexural rigidity D are defined as follows:

3
po B
12(1-12)

In this study, we consider the following three typical boundary conditions:
Clamped edge:

w(x,y)=0, £, =0. (1)
Simply supported edge:

w(x,y)=0, ¢,, =0. (2)
Free edge:

w(x,y)=0, ¢, =0. 3)

Method for the problem. The numerical solution comprises two components:

w(x) =w,(x)+w;(x), xe,

where first part w,(x) is the boundary approximation, which satisfies the original bound-

ary conditions, and the second part ws(x) is the correction function, which satisfies

the governing equation and the homogeneous boundary conditions. These two parts are
represented as linear combinations of the basis functions 6,(x) and @ (x), respectively:
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L
w,(X)= D a,0,(x),xeQ;
i=1

U
wy(1)=D7,0,(x), xeQ.

u=1
These functions are approximated by the modified radial basis functions. For more

details, please refer to some related papers.
Numerical results. In this case, the aim is to verify the applicability of the proposed
numerical method by examining the response of an irregular plate under the influence
of a uniform load ¢,. The geometry of the plate is a right-angled sector with (0, 0)

as the center of the circle and radius 1.
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Fig. 1. The numerical solution by the present method and FEM:
a — Numerical solution; b — FEM solution

The obtained results from numerical experiments confirm the potential of the pro-
posed method in terms of both accuracy and efficiency.

YK 629.4.045:629.4.015

NMPUMEHEHUE COBPEMEHHbIX TEXHOJIOMMIA ANS OLIEHKU
ANHAMUYECKUX XAPAKTEPUCTUK CUCTEMBDI
«ANTMHHOMEPHbIN TPY3 - CLIEIN BATOHOB»

M. I. Tereenr"?, H. A. BomeyHZ, A. B. Bopomyﬂ2

1 . . .
Yupeorcoenue obpazosanus «I omenvckuii 2ocyoapcmeeHHblll mexHUYecKull
yuugepcumem umernu I1. O. Cyxoeon, Pecnyonuxa benapyco

2 . .
Yupeowcoenue obpasosanus «benopycckuii 2ocyoapcmeenibiil
YHUgepcumem mpancnopmay, 2. I omens

Paccmompenvr osmoorcnocmu npumenenus unsceneprozo naxema MSC.Adams ons umuma-
yuu pabomsl CuUCmeMyvl «OTUHHOMEPHDBIL 2PY3 — CYEn 6420H08» U AHATU3A OBUICEHUS MAKOU Cucme-
Mbl 8 YCIOBUAX IKCHIYAMAYUU, NPUOTUNCEHHBIM K PeanbHbIM. Bbinonneno komnviomepHoe mooenu-
posanue coyoapeHus cucmemvl «OITUHHOMEPHDIIL PY3 — CYen 6a20HO8Y NpU YCA0BUU 3AKPENIeHUs
2py3a ¢ nOMOWbIO MYPHUKEMHBIX ONOP, GKIIOYAIOWUX KAK NOOBUDICHBIE, AK U HENOOBUIICHbIE dTe-



