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Analytical expressions for the tenth-order mass-dependent radiative corrections to the
lepton anomaly of each of the charged leptons are derived explicitly for a certain class of
QED Feynman diagrams with insertions of the vacuum polarization operator with four closed
lepton loops, where only one loop consists of leptons ` different from the external leptons
L, ` 6= L. The approach is based on the consecutive application of dispersion relations for
the photon polarization operator and of the Mellin–Barnes transform of the propagators
of massive particles. The result is expressed in terms of the mass ratio r = m`/mL. We
investigate the behaviour of the exact analytical expressions as r → 0 and r → ∞ and
compare it with the corresponding asymptotic expansions known in the literature. We assert
that in the region of physical values of r the asymptotic expansions provide a high precision
approximation to the exact results.
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1. Introduction

The electromagnetic self interaction of
charged spin 1/2 point-like particles (leptons)
shifts the gyromagnetic factor gL from the value
2, predicted by the Dirac’s theory [1], gL 6=
2, leading to the famous effect referred in the
literature to as the anomalous magnetic moment
of leptons defined as aL = (gL − 2)/2. This
effect is of a great importance in understanding
the physics of the Standard Model (SM) and
beyond; consequently a plenty of nowadays high
precision experiments is devoted to measurements
of aL of leptons, L = e, µ and τ The
accuracy of the measurements is of the order of
0.1 parts per trillion (ppt) for electrons [2, 3]
and 0.20 parts per million (ppm) for muons [4].
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jinr.ru
†E-mail: lashkevich@gstu.gomel.by
‡E-mail: kaptari@theor.jinr.ru

This imposes corresponding improvements of
the accuracy of theoretical calculations within
the SM and even investigations of physics of
possible effects beyond the SM. The accuracy
of experiments requires theoretical calculations
for the radiative corrections of the order of
α5 or higher, where α = e2/4π is the fine
structure constant, see, e.g., Ref. [5]. Due to
the complexities of analytical calculations of
so high order corrections, one usually employs
numerical methods [6–9] with involvements of
specific computational algorithms that allow for
high precision numerical manipulations, e.g., the
known PSLQ algorithm [10]. However, these
numerical calculations are rather computer-
time consuming, the corresponding codes are
quite lengthy and, consequently, independent
confirmation of the results is difficult. Hence,
it appears tempting to find at least a class of
some specific Feynman diagrams that can be
calculated analytically and the obtained explicit
expressions to be used in cross-checking of the
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numerical results. Moreover, explicit analytical
results will allow for separate detailed analysis of
different partial contributions. This is the subclass
of diagrams known as the “bubble”-like diagrams
which consist on the lepton electromagnetic
vertex with insertions of the photon vacuum
polarization operators with solely closed lepton
loops.

Among the first analytical calculations of
the “bubble”-like diagrams of the eighth-order
and tenth-order QED contributions to the muon
anomaly, one can mention Ref. [11] where
computations were performed within a framework
with combined utilization of the dispersion
relations and Mellin–Barnes transform. Earlier,
the Mellin–Barnes formalism was suggested in
Ref. [12] to be used as a tool for evaluating
the massive Feynman integrals. This technique is
quite popular and widely used in the literature
in multi-loop calculations in the relativistic
quantum field theories, cf. Refs. [13–15]. In
Ref. [11] analytical expressions for aµ was
presented as an expansion in terms of the
ratio r = m`/mL, where mL is the mass of
the external lepton L, and m` is the mass of
the internal leptons ` 6= L in the loops of
the polarization operator. The eighth-order and
tenth-order QED corrections in Ref. [11] were
calculated as asymptotic expansions of the ratio
r at low r � 1 and high r � 1 for the
muon anomaly. The approach was generalized
in Ref. [16] to any kind of leptons where
exact expressions for corrections with all possible
combinations of the external L and internal `
leptons, L = e, µ and τ , in the whole interval
of the ratio 0 < r < ∞ were presented. The
eighth order corrections from three-loop diagrams
with all possible combinations of leptons L and `
were given in Ref. [16]. The diagrams with four
identical loops (````) were analysed in Ref. [17];
the ones with two loops L and two loops `, i.e.
the diagrams of the type (LL``), were presented
in Ref. [18], while the (L```) diagrams – in
Ref. [19]. In the present paper we focus on the
tenth order coefficients A(10))

2 (r) for the particular
class of four-loop diagrams with only one internal
lepton ` different from the external lepton L, i.e.,

for the (LLL`) diagrams, as depicted in Fig. 1.
We deduce analytical expressions for the (LLL`)

corrections of A(10))
2 (r) in the whole interval of

r for all types of leptons L and `. To be able
to compare our results with the ones previously
reported in the literature, we perform asymptotic
expansions at r → 0 and r → ∞ and investigate
their validity for the ratio rphys corresponding to
the physically existing lepton masses. We argue
that it suffices to consider only few first terms in
the asymptotic expansions to calculate A(10))

2 (r)
at rphys with the desired accuracy.

L LL `

L L

FIG. 1: Tenth-order diagram considered in the
present paper. The values of p and j in Eq. (1)

are p = 3 and j = 1.

2. Basic formulae

The herein section is dedicated to the
consideration of the most general form of the
QED corrections to the lepton anomalous
magnetic moment due to bubble-like Feynman
diagrams with insertions of the photon
polarization operator with an arbitrary number
n = p+ j of lepton loops, where p is the number
of loops consisting of leptons L of the same type
as the external one, and j denotes the leptons
` 6= L. The corresponding Feynman diagram is
depicted in Fig. 2, left panel.

It is straightforward to show [11, 16, 20])
that by applying consecutively the dispersion
relations to the polarization operators and
the Mellin–Barnes representation [12–14]
for the Feynman parametric integrals, the
electromagnetic vertex Γµ(p1, p2) of the (n + 1)-
th order, left panel in Fig. 2, can be related
to the vertex diagram of the second order
with exchanges of one but massive photon, as
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FIG. 2: The Feynman diagrams considered in
this paper contributing to the lepton anomalous

magnetic moment. Left panel: radiative
corrections to the electromagnetic lepton vertex

with insertions of the vacuum polarization
operator with an arbitrary number n of lepton
loops. Right panel: the second order diagram
representing the set of graphs depicted in the
left panel as exchanges of one massive photon,

see text.

depicted in the right panel of Fig. 2. Then the
general expressions for the radiative corrections
corresponding to bubble-like diagrams with
n = p + j closed lepton loops can be written as
(see Refs. [11, 16] for details)

aL(p, j) =
α

π

1

2πi
F(p,j)

c+i∞∫
c−i∞

dz

(
4m2

`

m2
L

)−z
× Γ(z)Γ(1− z)

(α
π

)j
Rj(z)

(α
π

)p
Ωp(z). (1)

In Eq. (1) F(p,j) = (−1)p+j+1Cpp+j where
Cpp+j are the familiar binomial coefficients; the
variable c is an arbitrary number from the
interval a < Re z < b that defines the z-
strip of the analyticity of the integrand (1). The
Mellin momenta Rj(z) and Ωp(z) in Eq. (1) are
determined by the polarization operators Π(L)

and Π(`) according to(α
π

)j
Rj(z) =

∞∫
0

dy

y

(
4m2

`

y

)z
1

π
Im
[
Π(`)(y)

]j
,

(2)(α
π

)p
Ωp(z) =

1∫
0

dx x2z(1− x)1−z

×
[
Π(L)

(
− x2

1− x
m2
L

)]p
, (3)

The explicit expressions for Π(L,`) in Eqs. (3) and
(2) are well known in the literature, q.v. Ref. [20]

Re Π(L,`)(y) =
(α
π

)[8

9
− δ2

3
+ δ

(
1

2
− δ2

6

)
× ln

|1− δ|
1 + δ

]
,

1

π
Im Π(L,`)(y)=

(α
π

)
δ

(
1

2
− δ2

6

)
θ
(
y − 4m2

(L,`)

)
,

where δ =
√

1− 4m2
(L,`)/y. Evidently, since

the operator Π(L)

(
− x2

1− x
m2
L < 0

)
in Eq. (3)

is of the Euclidean nature, and since the θ-
function in Im Π(L,`)(y), the polarization operator

Π(L)

(
− x2

1− x
m2
L

)
is purely real and does not

depend on the lepton masses,

Π(L)

(
− x2

1− x
m2
L

)
=
α

π

[
5

9
+

4

3x
− 4

3x2

+

(
−1

3
+

2

x2
− 4

3x3

)
ln(1− x)

]
.(4)

Furthermore, by a simple change of
variables, y = 4m2

`/ξ in Eq. (2), it is
straightforward to show that Rj(z) is also
independent of the lepton masses. Consequently,
the only dependence of aL in Eq. (1) on masses
enters through the ratio

r =
m`

mL
. (5)

This variable is commonly accepted in the
literature to classify the contributions to aL
from different Feynman diagrams; it allows
to emphasize separately terms completely
independent of masses, the so-called universal
contribution A1 at r = 1 and the mass-dependent
terms A2(r) and A3(r1, r2) at r 6= 1 (for details,
see Ref. [5]):

aL = A1

(
mL

mL

)
+ A2

(
m`

mL

)
+A3

(
m`1

mL
,
m`2

mL

)
.

(6)

At the same time, each term in Eq. (6) can be
represented as Taylor expansions over the fine
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structure constant α, i.e.

A1(r = 1) = A
(2)
1

(α
π

)1
+A

(4)
1

(α
π

)2
+

+A
(6)
1

(α
π

)3
+A

(8)
1

(α
π

)4
+A

(10)
1

(α
π

)5
+ · · · ,

(7)

A2 (r) = A
(4)
2 (r)

(α
π

)2
+A

(6)
2 (r)

(α
π

)3
+A

(8)
2 (r)

(α
π

)4
+A

(10)
2 (r)

(α
π

)5
+ · · · , (8)

A3 (r1, r2) = A
(6)
3 (r1, r2)

(α
π

)3
+A

(8)
3 (r1, r2)

(α
π

)4
+A

(10)
3 (r1, r2)

(α
π

)5
+ · · · ,

(9)

where r1 = m`1/mL, r2 = m`2/mL, with m`1,2

as masses of two internal leptons `1,2 different
from L. The leading order contribution to aL was
obtained, for the first time, by Schwinger [21],
aL ' α/2π, which, in our notation, corresponds
to A

(2)
1 = 1/2. The universal coefficients A1

were further studied analytically in a series of
publications (see, e.g., Refs. [22, 23]) where
explicit expressions were found for a rather high
order n, up to n = 13. It is also worth mentioning
that the coefficients A(2n)

1 decrease for n < 7 and,
starting from n = 7, increase factorially.

The analytical behaviour of the mass-
dependent coefficients A2,3 for high enough n
(n > 4) remains hitherto unstudied. So far,
higher-order analysis has been based mainly
on either approximate asymptotic expansion of
the corresponding Feynman diagrams or more
accurate but cumbersome and computer time
consuming numerical calculations.

It turns out that the analytical expressions
for A(2n+2)

2 (r) are quite cumbersome; therefore in

testing the consistency of the final results, one
often employs thorough comparisons of the limits
A

(2n+2)
2 (r → 1) with the well-known analytic

expression for A(2n+2)
1 (1), see e.g. Refs. [23, 24].

In our case

A
(10)
1 = −3689383

656100
− 21928 π4

1403325
− 128 ζ(3)

675

+
64 ζ(5)

9
≈ 4.7090571603...× 10−4 . (10)

It is also instructive to stress that the
universal coefficient of the previous order 2n +

2 with n = 1, 2, 3, i.e., A
(4,6,8)
1 (1) can be

immediately obtained from Eq. (3) as the Mellin
momenta Ωn=1,2,3(z) at z = 0.

3. Analytical calculations

In this Section we proceed with explicit
calculations of the diagram in Fig. 1, for which
p = 3, j = 1 and, consequently F(p,j) = −4. Then
Eqs. (1) and (8) entail that

A
(10)LLL`
2 (r) = − 4

2πi

c+i∞∫
c−i∞

(4r2)−zΓ(z)Γ(1− z)

× R1(z)Ω3(z)dz, (11)

where the Mellin momenta R1(z) and Ω3(z), see
Eqs. (2) and (3), read as

R1(z) =

√
π

4

Γ(2 + z)

z Γ(5/2 + z)
(12)

and
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Ω3(z) =
125

729
X0(z, 0)− 64

27
X0(z,−6) +

64

9
X0(z,−5)− 112

27
X0(z,−4)− 32

9
X0(z,−3) +

140

81
X0(z,−2)

+
100

81
X0(z,−1)− 25

81
X1(z, 0)− 64

9
X1(z,−7) + +

224

9
X1(z,−6)− 608

27
X1(z,−5)− 160

27
X1(z,−4)

+
908

81
X1(z,−3) +

14

9
X1(z,−2)− 40

27
X1(z,−1) +

5

27
X1(z, 0)− 64

9
X2(z,−8) +

256

9
X2(z,−7)

− 928

27
X2(z,−6) +

32

9
X2(z,−5) +

140

9
X2(z,−4)− 104

27
X2(z,−3)− 8

3
X2(z,−2) +

4

9
X2(z,−1)

− 1

27
X3(z, 0)− 64

27
X3(z,−9) +

32

3
X3(z,−8)− 16X3(z,−7) +

56

9
X3(z,−6) +

16

3
X3(z,−5)

− 4X3(z,−4)− 4

9
X3(z,−3) +

2

3
X3(z,−2), (13)

where we introduced the following notation:

Xk(z, n) =

∫ 1

0
dxx2z+n(1− x)1−z lnk(1− x).

(14)

Integrals (14) can be carried out explicitly with
the result

X0(z, n) =
Γ(2− z)Γ(1 + n+ 2z)

Γ(3 + n+ z)
,

X1(z, n) = X0(z, n)

(
ψ (2− z)− ψ (3 + n+ z)

)
X2(z, n) = X0(z, n)

[(
ψ (2− z)− ψ (3 + n+ z)

)2
+ ψ(1) (2− z)− ψ(1) (3 + n+ z)

]
,

X3(z, n) = X0(z, n)

{[
ψ(2− z)− ψ(3 + n+ z)

]3
+ 3

[
ψ(2− z)− ψ(3 + n+ z)

]
×
[
ψ(1)(2− z)− ψ(1)(3 + n+ z)

]
+ ψ(2)(2− z)− ψ(2)(3 + n+ z)

}
, (15)

where ψ(x), ψ(1)(x) and ψ(2)(x) are the
polygamma functions of the order 0, 1 and 2,
respectively.

As mentioned, the universal coefficient of
the previous order 2n + 2 with n = 1, 2, 3,

i.e. A(4,6,8)
1 (1) can be immediately obtained from

Eq. (3) as the Mellin momenta Ωn=1,2,3(z) at
z = 0. So, the eighth order coefficients are
(cf. Ref. [16])

A
(8)
1 =− lim

z→0
Ω3(z)=

151849

40824
− 2

45
π4 +

32

63
ζ(3),

(16)

which is nothing but the exact analytical
expression for A(8)

1 known in the literature, see,
e.g., Ref. [23]. Above, in Eq. (16), ζ(3) is the
Euler-Riemann zeta function.

Further, using Eqs. (12)-(15) one can
rearrange Eq. (11) to obtain a more compact form
of the coefficients A(10)LLL`

L (r)

ALLL`L (r) = − 4

2πi

c+i∞∫
c−i∞

r−2zF(z)dz, (17)

where the integrand F(z) reads as

F(z) =

{
−
zQ1(z) + π2

(
2 + 3z + z2

)2
Q2(z)

2(z − 4)(z − 3)(z − 2)(z − 1)

× (2z − 7)(2z − 5)

z(z + 1)3(z + 2)3
−
[

π Q3(z)

3(z − 1)z(z + 1)2(z + 2)2

− 54(−35 + 4z + 47z2 − 24z3 + 3z4)ψ(1)(−z)
]

cot(πz)

+
Q4(z)ψ

(1)(−z)
(z − 4)(z − 3)(z − 2)(z − 1)z(z + 1)(z + 2)

}
× 2π2

9Z(z) sin(πz)2
. (18)
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In Eq. (18) Q1−4(z) are the polynomials and the
function Z(z) in the denominator looks like

Z(z) = z (z + 2)(2z − 7)(2z − 5)(2z − 3)(2z − 1)

× (2z + 1)(2z + 3). (19)

From Eqs. (18) and (19), one immediately
infers that the integrand F(z) in (17) is a singular
function in the complex plane of z with numerous
poles of different orders originating from the
zeros of the denominator of F(z) and from
singularities of the functions cot(πz) and ψ(1)(z).
The higher-order residues we calculated by means
of a symbol manipulation package such as the
“Wolfram Mathematica” or “Maple” program
systems with built-in libraries allowing analytical
symbolic calculations. Then the integral (17) can
be calculated by the Cauchy residue theorem by
closing the integration contour consecutively in
the right (r > 1) and left (r < 1) semiplanes
of the complex variable z. Below, along with the
variable r, we widely use the variable t = r2,

that facilitates comparisons of our results with
the corresponding expressions well-known in the
literature.

a. The left semiplane: r < 1. By
closing the contour of integration to the left
and computing the corresponding residues in this
domain, we get the following result

A
(10)LLL`
2 (r < 1) = C0(r) + C1(r) ln(r2)

+ C2(r) ln2(r2) + Σ1(r). (20)

The expressions of C0,1,2(r) turned out to be
lengthy, containing a number of Euler-Riemann
zeta functions, polylogarithms Lin=2,3,4,5(r),
therefore we do not present them here, limiting
ourselves to the expansions derived from them.

The last term in Eq. (20) is the remaining
part of the sum over residues, which cannot be
summed as finite expressions with solely ordinary
or special functions,

Σ1(r) =
8

9

∞∑
n=5

{[
U1(n) + U2(n) ln(r2)− U3(n) ln2(r2)

]
ψ(1)(n) +

[
U2(n)− 2U3(n) ln(r2)

]
ψ(2)(n)

− U3(n)ψ(3)(n)

}
r2n , (21)

where the polynomials Ui=1,2,3 read as

U1(n) = (1296243648000 + 3554725305600n − 16506863523360n2 − 54634993591968n3

+ 79126014733992n4 + 352709519700528n5 − 21529000412568n6 − 958012707066648n7

− 502985408885851n8 + 1316237550535538n9 + 1304567835267877n10 − 886363099366492n11

− 1648029022182067n12 − 49464155746630n13 + 1088581912544723n14 + 531281976591752n15

− 273553914249634n16 − 336240959851264n17 − 60349526763400n18 + 65799427846016n19

+ 41856942836864n20 + 5240522170112n21 − 4168609708288n22 − 2258398984192n23

− 465273541120n24 − 14273536000n25 + 14816827392n26 + 3699474432n27 + 425967616n28

+24969216n29 + 589824n30
)
/
[
(n− 1)2(n+ 1)2(2 + n)2(3 + n)2(4 + n)2Y1(n)3

]
, (22)
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U2(n) = −(57153600 + 84732480n− 617507604n2 − 914732964n3 + 1374291015n4 + 2544708862n5

− 796452257n6 − 3105687569n7 − 907980806n8 + 1321227379n9 + 987930424n10 + 41071472n11

− 194849344n12 − 81652576n13 − 9384640n14 + 1995776n15 + 727040n16 + 80640n17 + 3072n18)

/
[
(n− 1)(n+ 1)(2 + n)(3 + n)(4 + n)Y1(n)2

]
,

U3(n) = 27
(
−35− 4n+ 47n2 + 24n3 + 3n4

)
/Y1(n), (23)

Y1(n) = (7 + 2n)(5 + 2n)(3 + 2n)(2n− 1)(1 + 2n)(−3 + 2n)(n− 2)n.

b. The right semiplane: r > 1 In the
same manner, we calculate and sum up all the
residues in the right semiplane of z. The result is
presented in the form

A
(10),LLL`
2 (r > 1) = D0(r) +D1(r) ln(r2)

+D2(r) ln2(r2) +D3(r) ln3(r2) +D4(r) ln4(r2)

+ Σ2(r) (24)

with the sum Σ2(r) determined by the same
quantities U1,2,3 and ψ(1,2,3) as in Σ1(r), Eq. (21),

Σ2(r) =
8

9

∞∑
n=5

{[
U1(−n) + U2(−n) ln(r2)− U3(−n)× ln2(r2)

]
ψ(1)(n)−

[
U2(−n)− 2U3(−n) ln(r2)

]
× ψ(2)(n)− U3(−n)ψ(3)(n)

}
1

r2n
. (25)

As before, the last term Σ2(r) in Eq. (24)
arises from the remaining part of the sum over
residues in the right semiplane r > 1 which cannot
be summed up in a close analytical form with
purely ordinary and/or special functions.

4. Asymptotical expansions

The obtained formulae for the coefficients
ALLL`2 (r) determine entirely the behavior of the
corresponding corrections in both left, r <
1, Eq. (20), and right semiplanes, r > 1,
Eq. (24). Due to cumbersomeness of the analytical
expressions, a thorough numerical analysis of
ALLL`2 (r) appears to be substantially hindered

and rather awkward in practical application.
However, qualitative investigations of ALLL`2 (r)
can be essentially relieved if, instead of the exact
analytical formulae, one employs their asymptotic
expansions at low, r � 1, and large, r � 1, values
of the ratio of the lepton masses. Such analyzes
have been widely used in the literature [11]. It
should be noted that at physical values of the
lepton masses the ratio r is basically located
namely in these regions; actually in the right
semiplane rphys > 16 � 1 whereas in the
left semiplane rphys < 0.06 � 1, see [25].
Here below we present separate analysis of the
asymptotic of ALLL`2 (r) in the left and right
semiplanes, respectively. To this end and to
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simplify comparisons with the results reported
previously in the literature, we use the variable
t = r2 instead of r. However, the final pictures
are presented again in terms of r which emphasize
more clearly the main peculiarities of the lepton
anomalies as functions of their masses.

c. Left semiplane: t < 1. We expand
the coefficients A

(10),LLL`
2 (t = r2) , Eq. (20), in

the left semiplane keeping terms up to t4. The
result is

A
(10),LLL`
2 asymp. (t� 1) = −46796257

3214890
+

143

81
π2 +

124

8505
π4 +

(
−151849

30618
+

8

135
π4 − 128

189
ζ(3)

)
ln t

+

(
92476

6615
− 16

9
π2
)
ζ(3) +

(
−374711

45927
− 16

675
π2 +

16

405
π4 +

2144

567
ζ(3)

)
t

+

[
16107486427

70020304200
+

5260603

26790750
π2 − 11504

467775
π4 +

(
−1565849

5051970
− 16

525
π2 +

8

405
π4 − 34064

31185
ζ(3)

)
ln t

+

(
652419088

108056025
− 16

27
π2
)
ζ(3)

]
t2 +

1

25

[
20439596209

26296514244
+

41112361

11252115
π2 − 1448

11583
π4 − 1673428808

81162081
ζ(3)

+

(
−932795

312741
− 21964

35721
π2 +

28960

3861
ζ(3)

)
ln t

]
t3 +

1

25

[
22028123510917

5259302848800
− 1152406

50426145
π2 − 601

27027
π4

+
4

45
ln t2 − 72554936

81162081
ζ(3) +

(
−423448433

145945800
+

4493

29106
π2 +

12020

9009
ζ(3)

)
ln t

]
t4 +O

(
t5
)
. (26)

We compare our expansion (26) with the
corresponding expression reported in Ref. [11],
where the expansion was restricted up to terms
O(t3) (cf. Eq. (B7) of Ref. [11]). We found that
with this accuracy the two explicit expressions
perfectly reconcile with each other. Albeit, we
shall stress that our definition of Ω3(z) slightly
differs from the one reported in Ref. [11]. Note
also that since summation in (21) starts from
n = 5, the sum Σ1(r) do not contribute to the
expansion Eq. (26).

Results of exact numerical calculations
by Eq. (20) (solid line) together with the
approximate results by the asymptotic formula
(26) (dashed and dotted lines) are presented in
Fig. 3. It demonstrates that in the region r <
0.4 the exact and approximate results practically
coincide. Surprisingly, at r > 0.4 the expansion
∼ O(r6) approximates the exact results much
better (the deviation being maximum ∼ 7% at
r → 1) than the expansion that includes the next

order in r. Moreover, a remarkable circumstance
here is that accounting for the next terms up to
∼ O(r10) in the asymptotic expansion, the results
diverge drastically from the exact ones at larger
r. Evidently, since up to terms ∼ O(r10) the sum
Σ1(r) does not contribute to (26), this is a direct
indication of the role of higher orders in r in the
expansion (20) and, presumably, points on the
increasing role of Σ1(r) at larger r, especially
at r → 1. This can be better understood if
one splits the exact result for A

(10)LLL`
2 (r < 1)

into two parts, one containing all the terms from
(20) except for the sum Σ1(r), the second one as
properly the sum Σ1(r):

A
(10)LLL`
2 (r < 1) = P(r) + Σ1(r). (27)

Then the asymptotic expansion (26) corresponds
to expansion of P(r) up to ∼ O(r10) which, as
seen from Fig. 3, is quite justified in the interval
(0 < r < 0.5). With increase of r, more and more
terms are required to be kept in the expansion.
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FIG. 3: The tenth order corrections
A

(10)LLL`
2 (r ≤ 1) in the left semiplane, r ≤ 1.

The solid line is the result of full calculations by
Eq. (20), the dotted line corresponds to the
asymptotic expansion keeping terms up to
∼ O(r6); the dashed line corresponds to the

asymptotic expansion (26) keeping terms up to
∼ O(r10). The open circles, as well as the
associated with them labels, point to the

coefficients A
(10),LLL`
2 (r) at r corresponding to

physical values of the lepton masses. The star
indicates the value of the mass independent
coefficient 4A

(10),LLL`
1 (r = 1), see Eq. (10).

This clearly exhibits the Fig. 4, where the relative
contributions of the P(r) and Σ1(r) to the exact
corrections A

(10)LLL`
2 (r < 1) are presented. It

demonstrates that the term P(r) dominates in
the interval (0 < r < 0.7) then its contribution
decreases rather fast. At first glance, there is a
discrepancy in behaviour of the asymptotic of
P(r) in Fig. 3, which is always above the exact
values of A(10)LLL`

2 (r < 1), and the contribution
of the exact P(r), which imposes a behaviour
below the exact A

(10)LLL`
2 (r < 1) (compare

the dashed lines in Figs. 3 and 4). Obviously,
such an apparent contradiction is merely a clear
evidence that the asymptotic expansion r � 1
becomes inapplicable at r > 0.5 ÷ 0.6. However,

in practice one focus on the interval r < 0.06,
where all the physical values of r are located, see
Fig. 3. Consequently, the approximate expression
(26) can be safely used for concrete estimates
of A(10)LLL`

2 (r < 0.06). The accuracy of such
approximate calculations can be estimated if one
defines the relative deviation of the asymptotic
expressions from the exact ones as

ε(r) =

∣∣∣A(10) LLL`
2 exact (r)−A(10) LLL`

2 asymp. (r)
∣∣∣

A
(10) LLL`
2 exact (r)

(28)

and computes ε for different values of r. So,
calculations based on the expansion ∼ O(r6)
performed in the physical interval of lepton
masses at r < 1 ranges from ε(r) ∼ 5 · 10−22

at r = 2.88 · 10−4 (corresponds ≈ me/mτ ) to
ε(r) ∼ 2 · 10−8 at r = 0.0594 (corresponds to
≈ mµ/mτ ).
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FIG. 4: The relative contribution of the two
terms in Eq. (27) to the corrections
A

(10)LLL`
2 (r < 1). The solid line is the

contribution of Σ1(r) and the dashed line is the
contribution of P(r).

d. Right semiplane: t > 1. Analogous
calculations in the right semiplane up to terms
O
(
1/t5

)
give
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A
(10)
2,as(t) =

t�1

(
202991

656100
− 4

2025
π4 − 64

675
ζ(3)

)
1

t
+

(
122444553407

726062400000
− 101

56700
π4 − 7543283

4375822500
ln(t)

− 40783

27783000
ln2(t)− 37

396900
ln3(t)− 1

15120
ln4(t) +

37

33075
ζ(3)− 1

630
ln(t)(2− 2ζ(3))

)
1

t2

+

[
4252141320359

66162436200000
− 2

25515
π4 +

160655261

88610405625
ln(t)− 1243103

1125211500
ln2(t) +

1061

5358150
ln3(t)

− 1

17010
ln4(t)− 2122

893025
ζ(3)− 4

2835
ln(t)

(
9

4
− 2ζ(3)

)]
1

t3

+

[
415346515794743341

460318745337675840000
+

47

1122660
π4 +

53085234133

16606015344072
ln(t)− 30820751

47925008208
ln2(t)

+
16783

51866892
ln3(t)− 5

299376
ln4(t)− 16783

4322241
ζ(3)− 5

12474
ln(t)

(
251

108
− 2ζ(3)

)]
1

t4
+O

(
1

t5

)
. (29)

Figure 5 illustrates that, as in the previous
case, the asymptotic expansion ∼ O(1/r10) in the
right semiplane r > 1 approximates the exact
corrections A(10)

2 (r) quite well at physical values
of r, the approximation becoming better with
increase of r. This can be clearly seen if one
computes again the deviation ε(r), cf. Eq. (4),
in the right semiplane. One has ε(r) ' 3 · 10−6

at r = 16.82 (corresponds to ≈ mτ/mµ) and
ε(r) ' 4 · 10−26 at r = 3477.23 (corresponds
≈ mτ/me). This persuades us that likewise in the
case r < 1, the asymptotic expansion ∼ O(1/r10)
holds with an amazing accuracy in the whole
region of physical values of r and, consequently
can be safely applied to compute the tenth order
corrections by the simpler formula Eq. (29).

As r decreases further, the deviation ε(r)
increases, becoming rather large, for example,
ε(r) ∼ 32 % at r =

√
2.

5. Summary

We have presented analytical expressions
for the tenth-order QED corrections to the
anomalous magnetic moments of leptons due
to the diagram with inserts of the vacuum
polarization operator consisting of four closed
lepton loops, for the case when three of the loops
are formed by a lepton L of the same type as

100 101 102 10310-11

10-7

10-3

LLLl

Ae
eee

Ae
eee

  Exact, Eq. (22)  
  Asympt. O(r -10 ), Eq. (27)

 A(10)

2

A

r
 

 

FIG. 5: The tenth order corrections
A

(10)LLL`
2 (r ≥ 1) in the right semiplane, r ≥ 1.

The solid line is the result of full calculations by
Eq. (24), the dashed line corresponds to the

asymptotic expansion (29) keeping terms up to
∼ r8. The open circles, as well as the associated

with them labels, point to the coefficients
A

(10),LLL`
2 (r) at r corresponding to physical

values of the lepton masses. The star indicates
the value of the mass independent coefficient

4A
(10),LLL`
1 (1), Eq. (10).

the external one, and one loop is formed by a
lepton of a different type ` 6= L. This paper
is a continuation of our investigations of the
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corrections to aL from the “bubble”-like diagrams.
As previously, the approach is essentially based
on the dispersion relations and the Mellin–Barnes
transform for the propagators of massive photons.
The method allows one to derive explicitly
the corresponding tenth order corrections aL as
functions of the ratio r = m`/mL of the mass of
the internal ` to the mass of the external L leptons
in the whole interval (0 < r < ∞). The resulting
expressions turn out to be extremely complicated
and cumbersome. However, since in reality for
physically existing leptons one has either r �
1, or r � 1, it is appropriate to replace the
exact expressions by their asymptotic expansions,
which are much simpler and more convenient
for numerical calculations. The corresponding
expansions at r � 1 and r � 1 were derived and

the limits of their applicability were investigated.
We argued that the asymptotic expansions work
quite well in the intervals (0 < r < 0.1)
and (2 < r < ∞), and can be safely
used for numerical calculations of the coefficient
A

(10)LLL`
2 (rphys) for each of the charged leptons.
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