ХИМИЯ

Академик Б. А. ҚАЗАНСКИИ, А. Л. ЛИБЕРМАН, А. Ф. ПЛАТЭ, М. И. РОЗЕНГАРТ и О. Д. СТЕРЛИГОВ

ЛАБОРАТОРНЫЙ СПОСОБ БЫСТРОГО ГИДРИРОВАНИЯ ОЛЕФИНОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ

В 1933—34 гг. Н. Д. Зелинский с сотрудниками (1) предложил для гидрирования кетонов при атмосферном давлении активировать платинированный уголь небольшими количествами хлористого палладия или платинохлористоводородной кислоты. Активированные таким образом катализаторы обладали способностью гидрировать кетоны с весьма большой скоростью, причем карбонильная группа в ряде случаев восстанавливалась сразу до CH_2 -группы.

Нам казалось интересным выяснить, не представят ли такие катализаторы каких-либо преимуществ по сравнению с платиновой чернью при гидрировании непредельных углеводородов, тем более что, как мы убедились, даже прибавление всего лишь нескольких капель раствора платинохлористоводородной кислоты или хлористого палладия к платиновой черни уже заметно увеличивает скорость гидрирования олефинов.

Опыт показал, что активированный таким образом платинированный уголь действительно во многом превосходит обычно применяемую для гидрирования платиновую и палладиевую чернь. Платинированный уголь, активированный, как сказано выше, дает возможность гидрировать олефины в присутствии очень незначительных количеств платины с необычно большой скоростью и при этом не только в растворе, но, что особенно важно, также и совсем без какого-либо растворителя. Так, уже в первых опытах нам удавалось гидрировать приблизительно по 50 г олефина (2,2-диметил-3-гексена и каприлена) в один прием за 3—4 часа при комнатной температуре в присутствии 0,25 г платинированного угля (20% Pt), активированного добавлением 1 мл водного раствора платино-хлористоводородной кислоты, содержащего 0,03 г платины. Таким образом, все количество платины составляло 0,08 г, или 0,16% от веса углеводорода. При таком же соотношении платины с углеводородом 214,5 г каприлена было прогидрировано за 6,5 час.

При употреблении в качестве активирующей добавки хлористого палладия в эквимолекулярном к платинохлористоводородной кислоте отношении были получены практически такие же результаты; количество благородного металла (в процентах по весу) было еще меньше, но гид-

рирование протекало несколько медленнее.

Недавно В. В. Патрикеев и А. Л. Либерман (2) показали, что при приготовлении таких катализаторов платина, первоначально содержавшаяся в исходном платинированном угле, играет роль катализатора реакции восстановления платинохлористоводородной кислоты водородом. В отсутствие металлической платины восстановление платинохлористоводородной кислоты газообразным водородом при комнатной температуре идет крайне медленно, ускоряясь по мере появления металлической

1/2		Вес угле- водорода в г	Платинированный уголь		
NeNe onter	Углеводород		содержание навеска Рt в % в г		вес Pt
1 2 3 4 5 6 7 8	Каприлен	52,1 52,0 214,5 51,9 48,6 50,0 49,1 98,8	20 20 20 20 3 1 1 Pt-чернь*	0,25 0,25 1,05 0,25 1,0 1,0 3,0 0,1	0,05 0,05 0,21 0,05 0,03 0,01 0,03 0,1

^{*} Неактивированная

платины, т. е. протекает автокаталитически. Это навело нас на мысль испытать в качестве исходного платинированного угля препараты с малым содержанием платины (1—3%), так как можно было думать, что содержащейся в таких препаратах платины должно быть достаточно для каталитического восстановления платинохлористоводородной кислоты. Это казалось тем более вероятным, что, по данным А. М. Рубинштейна, Х. М. Миначева и Н. И. Шуйкина (3), платина при таком содержании в угле сохраняет в полной мере свою каталитическую активность в от-

ношении гидрогенизации бензола при 170°.

Наше предположение полностью подтвердилось. Действительно, в присутствии 3 г платинированного угля, содержащего 1% платины, и 1 мл раствора H₂PtCl₆ (0,03 г платины) нам удалось полностью прогидрировать 49 г 2,2-диметил-3-гексена всего за 1,5 часа. Как можно видеть, платина при этом составляла всего 0,12% от веса углеводорода. В то же время гидрирование 99 г того же углеводорода с платиновой чернью, взятой в таком же соотношении, заняло 3 рабочих дня (около 30 час.). При распределении того же количества платины на меньшей поверхности угля скорость реакции уменьшается: для гидрирования 49 г того же углеводорода с 1 г платинированного угля, содержащего 3% платины, и с 1 мл раствора H₂PtCl₆ потребовалось 3,5 часа. Уменьшение количества платины против указанного выше также ведет к быстрому уменьшению скорости реакции: 50 г того же углеводорода с 1 г платинированного угля, содержащего 1% платины, и с 1 мл раствора платинохлористоводородной кислоты пришлось гидрировать 8,5 час.

Изложенный здесь способ гидрирования непредельных углеводородов с успехом применялся нами в целом ряде случаев для препаративных целей с небольшими видоизменениями, не имевшими существенного значения. Так, кроме уже перечисленных выше, нами был прогидрирован

ряд других олефинов — изогексенов, изогептенов и изооктенов.

Таким образом, разработанная нами техника гидрирования олефинов может иметь широкое применение в лабораторной практике для гидрирования при комнатной температуре и атмосферном давлении больших порций олефинов со значительной скоростью. Возможность проведения гидрирования без растворителя позволяет упростить выделение гидрированного продукта и уменьшить связанные с этим потери, а кроме того освобождает от необходимости излишне увеличивать объем аппаратуры для гидрирования.

Экспериментальная часть

Условия гидрирования. Гидрирование производилось в утке обычного типа емкостью 150 мл для загрузок по 50 г и емкостью 300 мл

Активирующая добавка				
добанка	объем раствора в мл	вес металла в г	Длительность гидри- рования	Выход предельн углеводорода в %
H ₂ PtCl ₆ PdCl ₂ H ₂ PtCl ₆	1,08 1,0 2,85 1,0 1,0 1,0	0,033 0,018 0,086 0,03 0,03 0,03 0,03	3 ч. 10 мин 3 " 42 " 6 " 35 " 3 " 40 " 3 " 30 " 8 " 55 " 1 " 30 " около 30 час.	97,0 97,3 97,6 96,0 96,8 92,1 88,8 94,3

для загрузок по 100—200 г. Водород (электролитический) подавался из газометра под давлением 20—40 см вод. ст. сверх атмосферного. Утка укреплялась на качалке, дающей 300—320 качаний в минуту. В утку помещался платинированный уголь, приготовленный по Н. Д. Зелинскому (4), наливался свежеперегнанный углеводород * и вводился водный раствор платинохлористоводородной кислоты (0,03 г плагины в 1 мл раствора) или хлористого палладия (0,018 г палладия в 1 мл раствора).

После продувания утки водородом качалка пускалась в ход.

В первых опытах углеводород по окончании гидрирования просто отфильтровывался от катализатора, промывался водой и раствором соды, сушился и перегонялся. Однако в опытах, где брались сравнительно большие количества угля, на выходе уже сказывалось поглощение углеводорода катализатором. Это наглядно видно на примере опыта № 6 и особенно опыта № 7 (см. табл. 1). В связи с этим была выработана следующая процедура выделения углеводорода после гидрирования, давшая хороший результат, как показывает опыт № 5. Согласно этой процедуре, углеводород вместе с катализатором переносился в колбу для перегонки, туда же добавлялся двойной объем воды, и углеводород отгонялся с паром. Выход углеводорода после сушки составлял при этом около 97%, как и в опытах с небольшими количествами платинированного угля.

Углеводороды. Углеводороды были получены из соответствующих спиртов: 2,2-диметил-3-гексен — пиролизом ацетата 2,2-диметил-3-гексанола, каприлен — дегидратацией 2-октанола над окисью алюминия. Они имели следующие свойства: 2,2-диметил-3-гексен: т. кип. 99,8—101,3° при 759 мм; $n_D^{20}=1,4073$; $d_A^{20}=0,7049$. Каприлен: т. кип. 122—124°

при 760 мм; $n_D^{20} = 1,4137$; $d_4^{20} = 0,7177$.

Полученные гидрированием углеводороды имели после перегонки на колонке свойства: 2,2-диметилгексан: т. кип. $106,7-106,9^\circ$ при 753 мм; $n_D^{20}=1,3934;$ $d_4^2=0,6955.$ Октан: т. кип. $125,6-125,8^\circ$ при 760 мм; $n_D^{20}=1,3980;$ $d_4^{20}=0,7028.$

Зависимость скорости гидрирования от состава катализатора и его количества. Эта зависимость выяснялась нами на примере двух названных выше октенов. Полученные результаты сведены в табл. 1. Выводы из этих данных были уже обсуждены выше.

Выводы

1. Показано, что платинированный уголь, активированный платинохлористоводородной кислотой или хлористым палладием, является хоро-

^{*} В одном из опытов при попытке гидрировать каприлен, хранившийся несколько месяцев в склянке, реакция вначале пошла достаточно хорошо, но катализатор быстро потерял активность и реакция почти совсем прекратилась. Этот же каприлен после перегонки над металлическим натрием гидрировался без затруднения.

шим катализатором для гидрирования углеводородов в лабораторных условиях с большой скоростью при атмосферном давлении и комнатной температуре.

2. Показано, что гидрирование в этом случае можно производить

без каких-либо растворителей.

Поступило 19 I 1950

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Д. Зелинский с сотр., Избр. труды Н. Д. Зелинского, изд. АН СССР, 1941, 2, стр. 173; К. G. Раскеп d or ff, Ber., 67, 905 (1934). ² В. В. Патрикеев и А. Л. Либерман, ДАН, 62, 87 (1948). ³ А. М. Рубинштейн, Х. М. Миначев и Н. И. Шуйкин, ДАН, 42, 497 (1948); 47, 287 (1949). ⁴ Н. Д. Зелинский и М. Б. Турова-Поляк, Избр. труды Н. Д. Зелинского, изд. АН СССР, 1941, 2, стр. 150, 224.