Э. С. ЦИТЛАНАДЗЕ

К ВАРИАЦИОННОЙ ТЕОРИИ ОДНОГО КЛАССА НЕЛИНЕЙНЫХ ОПЕРАТОРОВ В ПРОСТРАНСТВЕ L_p (p>1)

(Представлено академиком С. Л. Соболевым 23 І 1950)

§ 1. В настоящей работе мы исследуем один класс нелинейных ограниченных операторов вариационного типа в пространстве L_p . Тем самым мы переносим результаты работ ($^{1-5}$) из гильбертова пространства на функциональное пространство L_p .

Как известно, пространство L_p есть совокупность всех действительных измеримых функций x(s) на сегменте $0 \leqslant s \leqslant 1$, для которых

существует интеграл $\int |x(s)|^p ds$ в смысле Лебега.

Рассмотрим слабо непрерывный функционал f(x), $x(s) \in L_p$, $0 \leqslant s \leqslant 1$, определенный в L_p и удовлетворяющий условиям: 1) f(x) > 0 для всех $x(s) \in L_p$, $x \neq \theta_p$, где θ_p —нулевой элемент пространства L_p ; 2) f(x) = 0 только тогда, когда $x = \theta_p$; 3) функционал f(x) дифференцируем в

каждой точке $x \in L_p$ в смысле Фреше (1).

Из условия дифференцируемости функционала f(x) для любых точек x(s), $h(s) \in L_p$, определяется линейный относительно h(s) функционал df(x;h). Последний, в силу известной теоремы Рица f(s), в f(s) допускает единственное представление вида f(s) доментов f(s) порождает внутреннее произведение элементов f(s) и f(s) порождает некоторый, вообще говоря, нелинейный оператор f(s) принадлежащий пространству f(s)

Обозначим через S_1 единичную сферу из L_p , а через \overline{S}_1 — поверх-

ность сферы S_1 .

Легко проверить, что когда функционал f(x) удовлетворяет условиям 1), 2) и 3), тогда оператор Lx удовлетворяет условию: 1') $Lx = \theta_q$ только тогда, когда $x = \theta_p$. Кроме того, предполагаем: 2') Lx сам дифференцируем в смысле Фреше; 3') Lx удовлетворяет условию Липшица в S_1 :

$$||Lx'-Lx''|| \leq M ||x'-x''||,$$
 (1)

где постоянная M не зависит от выбора элементов x', x'' из S_1 . Из условия 3') вытекает, что $(dL(x;h),h_1)=(dL(x;h_1),h)$, где x, h, $h_1\in L_p$, в силу которого Lx будем называть симметрическим оператором. Назовем множество $E\in L_p$ ограниченным, если нормы всех элементов, принадлежащих E, не превышают определенного положительного числа k. В силу условий 1') и 3') оператор Lx ограничен на E.

Пусть $\{\varphi_i\}$ $(i=1,2,\ldots)$ — ортогональная система Хара (7); тогда каждому $x(s) \in L_p$ соответствует ряд $\sum_{i=1}^{\infty} c_i \varphi_i$ такой, что $\left\|x - \sum_{i=1}^{\infty} c_i \varphi_i\right\| \to 0$

при $n o \infty$, где $c_i = (x, \varphi_i)$ $(i = 1, 2, \dots)$. Обозначим $A_n x = \sum c_i \varphi_i$

 $R_n x = \sum_{i=n+1}^{\infty} c_i \varphi_i.$

 Π емма 1. Если f(x) слабо непрерывный функционал в $S_{\mathbf{1}}$, то для произвольного $\varepsilon>0$ существует целое число $N=N(\varepsilon)$ такое, что для всех $n \geqslant N$ и для любого $x \in S_1$ имеем неравенство: $|f(A_n x) - f(x)| < \varepsilon.$

Определение 1. Оператор Lx, порожденный дифференциалом Фреше функционала f(x), будем называть вполне непрерывным, если он отображает множество элементов $S \in L_p$ в компактное множество.

Пусть элементу $Lx \in L_q$, $x \in S_1$, соответствует разложение по ортогональной системе $\{\varphi_i\}$ вида $Lxpprox A_nLx+R_nLx$. Кроме того, пусть $\mid \omega_f(x;h) \mid \leqslant c \parallel h \parallel^2$, где $\omega_f(x;h) = f(x+h) - f(x) - (Lx,h)$ и c — некоторая постоянная. Тогда имеет место

Лемма 2. Для произвольного $\varepsilon>0$ существует число $N=N(\varepsilon)$ такое, что для всех $x \in S_1$ и для всех $n \geqslant N$ имеем неравенство

 $||R_nLx|| < \varepsilon.$

С помощью лемм 1 и 2 доказывается

Теорема 1. Оператор Lx, порожденный дифференциалом Фреше слабо непрерывного функционала f(x), удовлетворяющего условию $\mid \omega_f(x;h) \mid \ll c \parallel h \parallel^2$, есть вполне непрерывный.

Определение 2. Элемент $x \in \overline{S}_1 \in L_p$ будем называть нормиро-

ванным собственным элементом оператора Lx, если

$$Lx(s) = \lambda Nx(s) \tag{2}$$

почти всюду на сегменте $0 \leqslant s \leqslant 1$, где

$$Nx(s) = |x(s)|^{p/q} \operatorname{sign} x(s),$$

 λ — собственное число, отвечающее собственному элементу x.

Легко показать, что если x — нормированный собственный элемент оператора Lx, то

$$\lambda = || Lx || = (Lx, x) = (N^{-1}Lx, Nx)^{p/q} \neq 0,$$

где N^{-1} — оператор, обратный к N.

Рассмотрим произвольную пару действительных чисел ξ и η. Если q>p, можно доказать, что

$$\left| |\xi|^{q/p} \operatorname{sign} \xi - |\eta|^{q/p} \operatorname{sign} \eta \right|^p \leqslant$$

$$\leqslant \max\left[2^{p},\left(\frac{q}{p}\right)^{p}\right] \mid \xi - \eta \mid^{p} \left(\mid \xi \mid^{q-p} + \mid \eta \mid^{q-p}\right),$$
(3)

$$\left| \left| \xi \right|^{p/q} \operatorname{sign} \xi - \left| \eta \right|^{p/q} \operatorname{sign} \eta \right|^{q} \leqslant 2^{q} \left| \xi - \eta \right| \left(\left| \xi \right|^{p-q} + \left| \eta \right|^{p-q} \right). \tag{4}$$

Если q < p, то получаем аналогичные неравенства. Основываясь на (3) и (4) и аналогичных им неравенствах, доказывается

Tеорема 2. Операторы N и N^{-1} в сфере $S_2 \in L_p$ с радиусом, равным 2, удовлетворяют условию Липшица:

 $\| Nx' - Nx'' \| \leqslant K \| x' - x'' \|, \quad \| N^{-1}Lx' - N^{-1}Lx'' \| \leqslant \overline{K} \| x' - x'' \|, \quad (5)$

где x' и x'' — произвольная пара элементов из S_2 , а K и $ar{K}$ — постоянные, зависящие только от р и д.

§ 2. В дальнейшем обозначим через Ωx оператор вида $\Omega x = N^{-1}Lx$ — $-(N^{-1}Lx,Nx)x$. Оператор Ωx в S_2 удовлетворяет условию Липшица. Доказательство этого предложения вытекает из (5) и из очевидного равенства

$$\Omega x' - \Omega x'' = N^{-1}Lx' - N^{-1}Lx'' + (N^{-1}Lx'' - N^{-1}Lx', Nx)x' + \\ + (N^{-1}Lx'', Nx'' - Nx')x' + (N^{-1}Lx'', Nx'')(x' - x''),$$

где x', x'' — произвольная пара элементов из S_2 . Кроме того, вычисления убеждают нас, что $\Omega x = \theta_p$ лишь тогда, когда x есть нормированный собственный элемент оператора Lx, $(Lx,\Omega x) > 0$, $(\Omega x,Nx) = 0$ для всех $x \in \overline{S_1}$ и Ωx ограничен в сфере S_2 : $\|\Omega x\| \leqslant 2^{p+q} M^{q/p} = M_1$, где M — постоянная из (1).

Пусть τ — непрерывный параметр, изменяющийся на сегменте $(0, 1/M_1)$ и пусть x_{τ} — непрерывный образ этого параметра. Рассмотрим функ-

циональное уравнение вида

$$dx_{\tau} = \Omega x_{\tau} d\tau. \tag{6}$$

Непосредственным обобщением метода последовательных приближений на функциональное пространство L_p доказывается, что уравнение (6) на сегменте $0 \leqslant \tau \leqslant 1/M_1$ имеет единственное решение x_τ , которое при $\tau=0$ обращается в заданный элемент x_0 , норма которого равна 1. Решение x_τ непрерывно зависит от x_0 .

В силу того, что $(Nx_{\tau}, dx_{\tau}) = 0$ для всех $x_{\tau} \in \overline{S_1}$, решение уравнения (6) мы будем называть ортогональной траекторией, выходящей из точки $x_0 \in \overline{S_1}$. Относительно ортогональных траекторий можно доказать следующие предложения.

Лемма 3. Ортогональная траектория x_{τ} , выходящая из точки x_{0} , $\parallel x \parallel = 1$, где x_{0} не является собственным элементом оператора

Lx, целиком лежит на поверхности S_1 единичной сферы S_1 .

Лемма 4. Вдоль ортогональной траектории x_{τ} для произвольного τ из сегмента $(0, 1/M_1)$ дифференциал Фреше $df(x_{\tau}; dx_{\tau}) > 0$. Положительность дифференциала Фреше определяет направление ортогональной траектории в сторону возрастания функционала $f(x_{\tau})$ в

данной точке.

§ 3. Пусть $x \in S_1$. Назовем x и -x диаметрально противоположные элементы сферы S_1 . Идентифицируя диаметрально противоположные точки сферы S_1 , получим проективное пространство S_1^* . Проективное пространство S_1^* содержит множества любой категории. Категорию множества мы понимаем в смысле Люстерника — Шнирельмана (8). Функционал f(x) на S_1^* будет четный, а Lx — нечетный.

Обозначим через $[P^*]_k \in S_1^*$ замкнутый и компактный класс всех множеств категории $\geqslant k$. Кроме того, пусть $[c-\varepsilon \leqslant f(x) \leqslant c+\varepsilon]$ — множество точек S_1^* , в которых $c-\varepsilon \leqslant f(x) \leqslant c+\varepsilon$, где $c=\sup_{[P^*]_k} \min_{P^*} f(x) P^*$ —произвольное множество класса $[P^*]_k$, $\varepsilon > 0$ — произ-

вольное число. Для произвольного $\varepsilon>0$ в классе $[P^*]_k$ существует непустое множество P^*_ε такое, что $\min_x f(x)>c-\varepsilon$. P^*_ε назовем ε -мак-

симальным множеством. Пусть $\{x_{\varepsilon}\}\in P_{\varepsilon}^{*}$ есть множество точек, на котором достигается минимум функционала f(x). Очевидно, что

$$\{x_{\varepsilon}\}\in[c-\varepsilon\leqslant f(x)\leqslant c+\varepsilon].$$

Пусть x^{ε} — произвольная точка пересечения $M_{\varepsilon}=P_{\varepsilon}^{*}\times [c-\varepsilon\leqslant f(x)\leqslant c+\varepsilon]$, не являющаяся собственным элементом оператора Lx.

В точке x^{ε} имеем неравенство $\|\Omega x^{\varepsilon}\| \gg \alpha > 0$, где α — некоторое число. Около точки x^{ε} на \overline{S}_1 построим замкнутую сферу $\overline{S}(x^{\varepsilon};r)$, где $r=2\varepsilon$. Можно доказать, что для всех $x\in \overline{S}(x^{\varepsilon};r)$ имеет место оценка $\|\Omega x\|\gg \alpha/2>0$.

Это значит, что $S(x^{\varepsilon};r)$ не содержит собственного элемента оператора Lx. Кроме того, существует постоянная B>0 такая, что для

всех $x \in \overline{S(x^{\epsilon};r)}$ имеем неравенство $||x|| ||Lx|| - (x,Lx) \geqslant B$.

Применяя последнее неравенство, можно показать, что в сфере $\overline{S(x^{\varepsilon};r)}$ имеет место неравенство $df(x_{\tau};dx_{\tau}) \geqslant R \, d\tau > 0$, где $R = B \cdot m$ и $m = \inf \| Lx \|$ для всех $x \in \overline{S(x^{\varepsilon};r)}$. Двигаясь по ортогональной траектории, исходящей из точки x^{ε} , непременно пересечем поверхность уровня $f(x) = c + \varepsilon$.

Определение 3. Назовем $x_{\epsilon} \in M_{\epsilon}$ ϵ -собственным элементом оператора Lx, если $\|\Omega x_{\epsilon}^*\| < \epsilon/2c$, где c—постоянная Липшица для

оператора Ωx .

T е o р e м a 3. Для произвольного $\varepsilon > 0$ существует $x_{\varepsilon} \in M_{\varepsilon}$ такой,

что x_{ε} будет ε -собственным элементом оператора Lx.

Доказательство получается с помощью рассуждения от противного, если деформировать множество M_{ϵ} до поверхности уровня $(f=c+\epsilon)$ вдоль ортогональных траекторий, исходящих из точек множества M_{ϵ} .

Пусть ε пробегает последовательность $\{\varepsilon_n\} \to 0$. Основываясь на

теореме 3, легко доказать следующую основную теорему.

T е о р е м а 4. Оператор Lx на поверхности уровня (f=c) имеет,

по крайней мере, один собственный элемент.

Если взять классы множеств $[P_1]^*$, $[P_2]^*$, ..., то на каждой поверхности уровня $(f=c_k)$ $(k=1,2,\ldots)$ существует собственный элемент оператора Lx. Как и в случае гильбертова пространства (см. (¹)), можно установить, что среди собственных элементов $\{x_k\}$ существует счетное множество линейно независимых, слабый предел которых равен θ_p .

Теорема 4 переносится на линейные пространства типа Банаха, в

которых существуют биортогональные базисы.

Тбилисский институт инженеров железнодорожного транспорта им. В. И. Ленина

Поступило 24 IX 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. А. Люстерник, Изв. АН СССР, сер. матем., **3**, 257 (1939). ² В. И. Соболев, ДАН, **31**, № 8 (1941). ³ Е. Н. Rothe, Ann. of Math., **49**, No. 2, 265 (1948). ⁴ Э. С. Цитланадзе, ДАН, **56**, № 1 (1947). ⁵ Э. С. Цитланадзе, ДАН, **57**, № 9 (1947). ⁶ Г. Riesz, Math. Ann., **69**, 449 (1910). ⁷ А. Нааг, Math. Ann., **69**, 331 (1910). ⁸ Л. А. Люстерник и Л. Г. Шнирельман, Топологические методы в вариационных задачах, М., 1930.