ХИМИЯ

И. Р. КРИЧЕВСКИЙ и Н. Е. ХАЗАНОВА

ε-ФАЗА АЗОТИРОВАННОГО ЖЕЛЕЗА

(Представлено академиком А. Н. Фрумкиным 17 І 1950)

Как известно, экспериментальное исследование равновесия в представляющей большой интерес системе железо—азот было затруднено в связи с необходимостью работать при высоких давлениях, причем все опубликованные ранее термодинамические расчеты давали сильно завышенные значения равновесных давлений азота, отпугивающие экспериментаторов. Так, по диаграмме P-T для системы железо—азот, построенной Лерером (1), следует, например, что при температуре 500° равновесие $\alpha-\gamma'$ -фаз азотированного железа имеет место при давлении азота 5400 атм., а равновесие $\gamma'-\varepsilon$ -фаз — при $280\,000$ атм.

В своей работе (2) мы показали, что во всех этих расчетах был допущен ряд принципиальных ошибок. Наиболее существенные из них (в количественном отношении) следующие: 1) все вычисления были проведены по законам идеальных газов, 2) не было учтено влияние

давления на активность твердых фаз.

В результате проделанных нами заново термодинамических вычислений мы дали правильную диаграмму P-T для той части системы железо—азот, которая охватывает область существования α -, γ - и γ' -фаз, причем значения равновесных давлений азота оказались значительно меньшими, чем опубликованные ранее. Часть диаграммы была проверена экспериментально.

Представляет несомненный интерес вычислить истинные условия равновесия и для системы азот— є-фаза азотированного железа.

Для своих расчетов мы выбрали метод "комбинирования констант равновесия", так как недостаток точных исходных экспериментальных данных помешал применить использованный нами ранее графический метод вычисления.

ε-фаза при температуре до 650° граничит с γ'-фазой, а при более высоких температурах с γ-фазой. Поэтому интересующее нас равновесие ε-фазы с одной из указанных фаз и молекулярным азотом может быть записано в виде следующего уравнения:

I.
$$\frac{2\beta}{\beta-\alpha}\operatorname{Fe}_{\alpha}^{-}N = \frac{2\alpha}{\beta-\alpha}\operatorname{Fe}_{\beta}N + N_{2}; K_{1},$$

где $\mathrm{Fe}_{\alpha}\mathrm{N}$ — ε -фаза, а $\mathrm{Fe}_{\beta}\mathrm{N}$ — одна из γ -фаз. K_1 — константа равновесия.

Используя константы равновесия хорошо изученной реакции синтеза аммиака

$$N_2 + 3H_2 = 2NH_3$$
; K_2

II.

и реакции взаимодействия аммиачно-водородной смеси с железом

III.
$$\frac{2\beta}{\beta - \alpha} \operatorname{Fe}_{\alpha} N + 3H_2 = \frac{2\alpha}{\beta - \alpha} \operatorname{Fe}_{\beta} N + 2NH_3; \quad K_3,$$

мы можем вычислить константу равновесия реакции I, K_1 :

$$K_1 = \frac{K_3}{K_2} \,. \tag{1}$$

С другой стороны, константа равновесия интересующей нас реакции определяется следующим уравнением:

$$K_{1} = \frac{a_{\text{Pe}_{\beta}N}^{2\alpha/(\beta-\alpha)} \cdot f_{N_{1}}}{a_{\text{Pe}_{\alpha}N}^{2\beta/(\beta-\alpha)}},$$
(2)

где $a_{\mathrm{Fe}_{\alpha}\mathrm{N}}$ — активность ε -фазы, $a_{\mathrm{Fe}_{\beta}\mathrm{N}}$ — активность γ - или γ' -фазы и f_{N} — летучесть молекулярного азота, находящегося при данной температуре в равновесии с указанными твердыми фазами. Отсюда видно, что равновесное давление азота в реакции I может быть найдено методом подбора из условия равенства K_1 , вычисленного по уравнениям (1) и (2).

Так как экспериментальные данные по равновесию реакции III для высоких температур мало точны из-за термической неустойчивости ε -фазы, то мы ограничились вычислением только равновесия $\gamma' - \varepsilon - N_0$

в интервале температур от 400 до 600°.

Принятые в нашем расчете значения констант равновесия реакций I, II и III приведены в табл. 1, причем значения констант равновесия реакции синтеза аммиака (K_2) вычислены по спектроскопическим данным Стефенсоном и Макмагоном $(^3)$, а значения констант равновесия реакции взаимодействия аммиачно-водородной смеси с железом (K_3) взяты из работ $(^1, ^4)$ (данные сглажены нами).

Таблица 1 Константы равновесия реакции I, II и III

Т-ра в °С	. 1g K ₂	lg К _а	lg K ₁	
	в атм. 2	ватм.'—1	B arm.	
400	-3,787	1,829	5,616	
450	-4,350	1,205	5,555	
500	-4,846	0,645	5,491	
550	-5,288	0,145	5,433	
600	-5,682	-0,300	5,382	

Активности твердых фаз при высоких давлениях вычислялись по известному уравнению:

$$\lg a_P = \frac{VP}{2,303\,RT}\,,$$

где a-активность данной фазы при давлении P и температуре T, а

V — молярный объем этой твердой фазы.

Молярные объемы γ' -фазы, приведенные в табл. 2, были вычислены нами по рентгенографическим данным (5). Для расчета молярных объемов ϵ -фазы были использованы данные о плотности ее, полученные пикнометрическим способом (6). Из-за отсутствия необходимых 678

сведений мы пренебрегли в наших вычислениях сжимаемостью и термическим расширением твердых фаз. Составы равновесно сосуществующих фаз, приведенные в той же таблице, были взяты с диаграммы состояния Айзенхута и Кауппа (5), построенной по данным азотирования железа аммиачно-водородной смесью при атмосферном давлении.

Таблица 2 Состав и молярные объемы ү'- и ε-фазпри их сосуществовании

Т-рав °С	γ'-¢	аза	ε-фаза			
	молярная доза азота	молярный объем фазы в см ^в	молярная доза азота	молярный объем фазы в см³		
400	0,2035	32,69	0,2711	24,13		
450	0,2035	32,69	0,2601	25,26		
500	0,2035	32,69	0,2508	26,29		
550	0,2035	32,69	0,2422	27,28		
600	0,2020	32,90	0,2267	29,28		

Летучесть молекулярного азота, вычисленная по данным P-V-T, известна до 6000 атм. и 200° (7). Кроме того, имеются экстраполированные на температуры до 600° значения летучести для этих же давлений (2). Однако равновесное давление азота над ε -фазой имеет, повидимому, более высокие значения. Поэтому мы были вынуждены прибегнуть к экстраполяции имеющихся данных по летучести молекулярного азота на более высокие давления.

Наилучшей из испробованных зависимостей для экстраполяции оказалась $\lg f_P/P$ против P (где P — давление, а f_P — соответствующее при данной температуре значение летучести), которая дала почти точно прямолинейные графики. В табл. 3 приведены экстраполированные значения летучести азота. Точность экстраполяции оценивается нами в $3-4^0/6$.

Таблица 3 Летучесть азота ($\lg f_{\mathbf{N}_n}$ в атм.)

Р атм.	0 °C	50°	100°	150°	200°	3 00°	400°	500°	600°
					CTORELL				
7 000	7,06	6,64	6,33	6,09	5,88	5,59	5,36	5,20	5,0
8 000	7.61	7,12	6,75	6,47	6,23	5,89	5,63	5,45	5,30
9 000	8,15	7,58	7.17	6,84	6,58	6,19	5,90	5,69	5,5
10 000	8,69	8,04	7.58	7,21	6,92	6,49	6,15	5,92	5,7
11 000	9.13	8,50	7.99	7.58	7.25	6,77	6,41	6,15	5,9
12 000	9.75	8.95	8.39	7,95	7.58	7,06	6,66	6,38	6,1
13 000	10.17	9,40	8.79	8,31	7.91	7,34	6,91	6,60	6,3
14 000	10.80	9.85	9.19	8.67	8.24	7.62	7.15	6.82	6.5
15 000	11,22	10,30	9.59	9.02	8.56	8.00	7.39	7.04	6.7

В результате проделанных нами вычислений были получены следующие значения давления азота, находящегося в равновесии с γ' - и ϵ -фазами азотированного железа.

 Если принять во внимание пределы ошибок экспериментальных данных по равновесию реакции азотирования железа аммиачно-водородной смесью и неточность определения плотности твердых фаз (неточность экстраполяции летучести скажется ничтожно мало на равновесном давлении, а аммиачное равновесие изучено очень тщательно), то точность вычислений упругости диссоциации є-фазы при температурах $400-550^\circ$ может быть оценена приблизительно в 300-500 атм.; при 600° из-за малой термической устойчивости є-фазы точность вычислений меньше.

Можно сказать, таким образом, что равновесие γ' — ε -фаз и моле-кулярного азота при температурах 400— 600° лежит при давлениях 12000—13000 атм. вместо $280\,000$ атм. по вычислениям Лерера. При настоящем уровне лабораторной техники получение ε -фазы азотированного железа при воздействии на последнее молекулярного азота становится экспериментально вполне осуществимым.

В связи с полученными результатами вычислений интересно подчеркнуть факт чрезвычайно быстрого возрастания летучести с повышением давления. Так например, при 15000 атм. и 0° летучесть превышает давление более, чем в 10 миллионов раз, в то время как при

7000 атм. — всего приблизительно в 10 тысяч раз.

Этот факт облегчает, как мы видим, перспективы экспериментального осуществления ряда процессов, требующих по термодинамическим условиям высоких давлений. Однако следует помнить, что этот факт в значительной степени снижается за счет влияния высоких давлений на активность конденсированных фаз.

Государственный научно-исследовательский и проектный институт азотной промышленности

Поступило 15 I 1950

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ E. Lehrer, Zs. Elektrochem., 36, 383 (1930). ² И. Р. Кричевский и Н. Е. Хазанова, ЖФХ, 21, 749 (1947). ³ С. С. Stephenson and Н. О. Мс Маноп, Journ. Ат. Chem. Soc., 61, 437 (1939). ⁴ S. Brunauer, М. Е. Jefferson, Р. Н. Еттеt and S. В. Hendricks, ibid., 53, 1778 (1931). ⁵ О. Eisenhut u. E. Каирр, Zs. Elektrochem., 36, 392 (1930). ⁶ A. Siverts u. R. Brill, Ber., 63, 1071 (1930). ⁷ П. Е. Большаков, ЖФХ, 18, 121 (1944).