МАТЕМАТИКА

в. и. соболев

ОБ ОДНОМ НЕЛИНЕЙНОМ ИНТЕГРАЛЬНОМ УРАВНЕНИИ

(Представлено академиком И.Г. Петровским 13 II 1950)

Рассматривается уравнение

$$\int_{B} K(s, t) g(t, x(t)) dt = \mu x(s), \qquad (1)$$

где B — ограниченная измеримая область n-мерного евклидова пространства, K(s, t), $s, t \in B$, — симметрическое позитивное, напрерывное на BB ядро и g(t, u) — определенная и измеримая для $t \in B$ и всех вещественных u функция, удовлетворяющая условиям:

а) для всех u_1 и u_2 | $g(t, u_1) - g(t, u_2)$ | $\leqslant N \mid u_1 - u_2 \mid$; β) g(t, -u) = -g(t, u);

 γ) ug(t, u) > 0 для всех $u \neq 0$.

Из α) и β) следует, в частности, что g(t, 0) = 0 и что $|g(t, u)| \leqslant$

 $\leq N(u)$ для всех u.

Уравнение (1) явилось в последние годы предметом ряда исследований при различных предположениях о ядре $K(s,\hat{t})$ и функции g(t,u) (1-4). Ниже дается теорема существования решений этого уравнения, не вытекающая из результатов указанных работ и полученная вариационно-топологическим методом, впервые предложенным Л. А. Люстерником (5).

Пусть $\{\varphi_i(s)\}$ и $\{\lambda_i\}$, $0 < \lambda_i \leqslant \lambda_{i+1}$, — полные системы собственных функций и чисел (в смысле теории линейных интегральных уравне-

ний) ядра K(s, t).

Отметим, что в силу сделанных о ядре предположений $\sum_{i=1}^{n} \frac{1}{\lambda_i}$ сходится.

Рассмотрим множество H элементов вида $x = \{\xi_i\}$, где $\{\xi_i\}$ — вещественная последовательность чисел, удовлетворяющая условию

$$\sum_{i=1}^{\infty} \lambda_i \, \xi_i^2 < \infty.$$

Если $y=\{\eta_i\}$ — другой элемент H, то полагаем $(x,y)=\sum \lambda_i\,\xi_i\,\eta_i$ и,

следовательно, $\|x\| = \left(\sum_{i=1}^{\infty} \lambda_i \, \xi_i^2\right)^{1/s}$. Тогда H- вещественное сепара-

бельное гильбертово пространство. Так как $\sum_{i=1}^{n} \xi_i^2 \ll \frac{1}{\lambda_i} \sum_{i=1}^{n} \lambda_i \, \xi_i^2$, то каж-

дому элементу $x=\{\xi_i\}\in H$ соответствует элемент $x(s)=\sum \xi_i \varphi_i(s)\in L_2(B)$.

Рассмотрим в пространстве H произвольную сферу $\sum_{i=1}^{\infty} \lambda_i \xi_i^2 \ll C^2$ и на этой сфере функционал

$$f(x) = \int_{B} G\left(t, \sum_{i=1}^{\infty} \xi_{j} \varphi_{j}(t)\right) dt,$$

где $G(t, u) = \int_{0}^{u} g(t, v) dv$.

Легко проверить, что $\|f(x)\| \leqslant \frac{N}{2\lambda_1} \|x\|^2$ и что f(x) дифференцируем в смысле Фреше, причем $df(x,h) = \sum_{i=1}^{\infty} g_i(\xi) h_i$, где $g_i(\xi) = \int_B g\left(t,\sum_{j=1}^{\infty} \xi_j \varphi_j(t)\right) \varphi_i(t) dt$.

Вводя оператор Ax = y, относящий элементу $x \{\xi_i\}$ элемент $y = \left\{\frac{g_i(\xi)}{\lambda_i}\right\}$, мы имеем, что df(x,h) = (Ax,h), и, следовательно, A— симметрический оператор, порожденный функционалом f(x). Отметим легко получаемое неравенство

$$|g_{i}(\xi^{(1)}) - g_{i}(\xi^{(2)})|^{2} \leqslant N^{2} \sum_{i=1}^{\infty} (\xi_{j}^{(1)} - \xi_{j}^{(2)})^{2},$$
 (2)

из которого в силу $g_i(0) = 0$, i = 1, 2, ..., следует:

$$|g_i(\xi)|^2 \leqslant N^2 \sum_{i=1}^{\infty} \xi_i^2.$$

Пусть A_n — вырожденный оператор, определенный равенством

$$A_n x = y_n;$$
 $v_n = \left\{ \frac{g_1(\xi)}{\lambda_1}, \dots, \frac{g_n(\xi)}{\lambda_n}, 0, \dots \right\}$

Покажем, что A_n вполне непрерывен на сфере $\|x\| \leqslant C$, для чего покажем, что $A_n x_k \xrightarrow{\text{сильно}} A_n x_0$ при $x_k \xrightarrow{\text{слабо}} x_0$, $\|x_k\|$, $\|x_0\| \leqslant C$. В самом деле, из $x_k \xrightarrow{\text{слабо}} x_0$ следует $\xi_i^{(k)} \to \xi_i^{(0)}$, $i=1,2,\ldots$ Далее, имеем

$$\begin{split} & |g_i(\xi^{(k)}) - g_i(\xi^{(0)})|^2 \leqslant N^2 \sum_{j=1}^{\infty} (\xi_j^{(k)} - \xi_j^{(0)})^2 \leqslant \\ & \leqslant N^2 \sum_{j=1}^{m_0} (\xi_j^{(k)} - \xi_j^{(0)})^2 + 4N^2C^2 \sum_{j=m_0+1}^{\infty} \frac{1}{\lambda_j}. \end{split}$$

Поэтому для заданного $\varepsilon_1>0$, выбирая сперва m_0 так, чтобы $\sum_{j=m_0+1}^{\infty}\frac{1}{\lambda_j}<\frac{\varepsilon_1^2}{8N^2C^2}$, а затем $k_0(\varepsilon_1)$ так, чтобы $\sum_{j=1}^{m_0}(\xi_j^{(k)}-\xi_j^{(0)})^2<\frac{\varepsilon_1^2}{2N^2}$ для $k\geqslant k_0$, будем иметь $\mid g_i(\xi^{(k)})-g_i(\xi^{(0)})\mid^2<\varepsilon_1^2$ для $k\geqslant k_0$.

Но тогда для заданного arepsilon>0 при $k\geqslant k_0(arepsilon_1)$ будем иметь

$$||A_n x_k - A_n x_0||^2 = \sum_{i=1}^n \frac{1}{\lambda_i} ||g_i(\xi^{(k)}) - g_i(\xi^{(0)})||^2 < \varepsilon^2,$$

если
$$\epsilon_1^2 \sum_{i=1}^n \frac{1}{\lambda_i} < \epsilon^2$$
, ч. т. д.

Далее, из неравенства

$$|| A_{x} - A_{n}x ||^{2} = \sum_{i=n+1}^{\infty} \frac{1}{\lambda_{i}} || g_{i}(\xi) ||^{2} \leqslant N^{2} \sum_{j=1}^{\infty} \xi_{j}^{2} \cdot \sum_{i=n+1}^{\infty} \frac{1}{\lambda_{i}} < \frac{N^{2}}{\lambda_{1}} || x ||^{2} \sum_{i=n+1}^{\infty} \frac{1}{\lambda_{i}}$$

следует, что $A_n \to A$ при $n \to \infty$ равномерно на сфере $\|x\| \leqslant C$. Но тогда на этой сфере A также вполне непрерывный оператор.

С помощью неравенства (2) получаем:

$$\begin{split} \|Ax_1 - Ax_2\|^2 &= \sum_{i=1}^{\infty} \frac{1}{\lambda_i} \|g_i(\xi^{(1)}) - g_i(\xi^{(2)})\|^2 \leqslant \\ &\leqslant N^2 \sum_{j=1}^{\infty} (\xi_j^{(1)} - \xi_j^{(2)})^2 \cdot \sum_{i=1}^{\infty} \frac{1}{\lambda_i} < \frac{N^2}{\lambda_1} \sum_{i=1}^{\infty} \frac{1}{\lambda_i} \|x_1 - x_2\|^2, \end{split}$$

т. е. оператор A удовлетворяет условию Линшица. Из условий α) и β) получаем, соответственно:

а) A(-x) = -Ax, т. е. оператор A нечетный;

b)
$$(Ax, x) = \sum_{i=1}^{\infty} g_i(\xi) \xi_i = \int_{B} x(t) g(t, x(t)) dt > 0$$
 для $x \neq 0$, т. е. опе-

ратор А позитивный.

Но тогда, в силу теоремы, ранее доказанной автором (6), оператор A имеет на сфере $\|x\|=C$ по крайней мере счетное множество различных собственных элементов $\{x_n\}$ и чисел $\{\mu_n\}$

$$Ax_n = \mu_n x_n, \quad n = 1, 2, \dots$$
 (3)

Напишем уравнение (3) в развернутом виде:

$$\frac{1}{\lambda_i} \int_B g\left(t, \sum_{j=1}^{\infty} \xi_j^{(n)} \varphi_j(t)\right) dt = \mu_n \xi_l^{(n)}.$$

Умножая обе части этого равенства на $\varphi_i(s)$ и суммируя по i, получим:

$$\int_{\Omega} K(s, t) g(t, x_n(t)) dt = \mu_n x_n(s),$$

где
$$x_n(s) = \sum_{i=1}^{\infty} \xi_i^{(n)} \varphi_i(s).$$

2 дан, т. 71, № 5

Таким образом, приходим к следующей теореме:

Теорема. Уравнение (1) при сделанных относительно ядра K(s, t) и функции g(t, u) предположениях имеет по крайней мере счетное число различных собственных функций

$$x_n(s) = \sum_{i=1}^{\infty} \xi_i^{(n)} \varphi_i(s)$$

и чисел и, причем

$$\sum_{i=1}^{\infty} \lambda_i (\xi_i^{(n)})^2 = C^2, \quad n = 1, 2, \dots$$

Замечания 1. Мы предполагали, что ядро K(s,t) не вырожденное. В случае вырожденного ядра $K(s,t) = \sum_{i=1}^n \frac{\varphi_i(s) \, \varphi_i(t)}{\lambda_i}$ можно утверждать существование у уравнения (1) по крайней мере n собствен-

ных функций. 2. Условие γ) можно ослабить, заменив его условием, что (x(t)g(t, x(t))dt > 0 для любой ненулевой функции $x(t) \in L_2(B)$.

- 3. Вместо непрерывности ядра $K(s,\ t)$ на BB можно потребовать, чтобы $K(s,\ t)$ имело суммируемый на BB квадрат и чтобы $\sum_{k=1}^{\infty} \frac{1}{\lambda_k} < \infty$.
- 4. Аналогичную теорему можно получить и для системы (см., например, (7)):

$$\int_{B} K_{i}(s, t) g_{i}(t, x_{1}(t), ..., x_{n}(t)) dt = \mu_{i} x_{i}(s), \quad i = 1, 2, ..., n,$$

при соответствующих предположениях о ядрах $K_i(s, t)$ и функциях $g_i(t, u_1, \ldots, u_n)$.

Воронежский государственный университет

Поступило 18 III 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. В. Немыцкий, Матем. сб., 41, 440 (1934). ² М. Соlomb, Math. Zs., 39, Н. 1 (1934). ³ М. М. Вайнберг, ДАН, 46, № 2 (1945). ⁴ М. М. Вайнберг, ДАН, 58, № 6 (1947). ⁵ Л. А. Люстерник, Изв. АН СССР, сер. матем., № 3, 257 (1939). ⁶ В. И. Соболев, ДАН, 31, № 8 (1941). ⁷ А. П. Гремяченский, ДАН, 60, № 3 (1948).