Довлады Академии Наук СССР 1949. Том LXIV, № 3

ХИМИЯ

Член-корреспондент АН СССР А. Д. ПЕТРОВ, Е. И. ЭРЗЮТОВА и М. И. БАТУЕВ

О ДЕСТРУКТИВНОМ ГИДРИРОВАНИИ ПОЛИМЕРОВ ИЗОБУТИЛЕНА

Леполимеризация полимеров изобутилена под атмосферным давлением, приводящая к образованию, помимо изобутилена, главным образом ди-пентамеров последнего, была исследована Thomas, Spark и Frolich (1) и Я. М. Слободиным и Н. И. Магусевич (2), которые подвергали разложению при 320—350° полимеры с молекулярным весом 20000-90000. Деструктивное гидрирование этих полимеров над никелем изучалось лишь в работе Schaad (3), который осуществил этот процесс в растворе пентана при температуре 250° и давлении 100 ам. Им было установлено, что в отличие от каучука, дающего в этих условиях преимущественно циклические углеводороды, полимеры изобутилена дают лишь алифатические непредельные и насыщенные углеводороды. Они были разбиты на 6 фракций, содержавших: октаны. полеканы и гексадеканы и остаток, в среднем состоящий из углеводородов состава См. (с мол. весом 625). Характеристика выделенных широких фракций (выкипавших в пределах 20°) ограничилась опрелелением их молекулярных весов, удельных весов и коэффициентов преломления.

Продолжая это исследование, мы установили, что в присутствии $10^{0}/_{0}$ от веса полимера никеля (полученного из муравьинокислого никеля) и при начальном давлении водорода 100 атм. можно, варьируя длительность нагрева от 5 до 25 час. и температуру от 220 до 320°, и без растворителя получать или преимущественно низкокипящие или, наоборот, высококипящие и высоковязкие углеводороды.

Задачей настоящего сообщения является характеристика строения углеводородов октановой фракции. Эта последняя была выделена в количестве около $500~\mathrm{r}$ на колонке Гемпеля в пределах $99-125^\circ$. Определение бромного числа по Кауфману показало, что во фракции содержится еще около $50^\mathrm{o}/_\mathrm{o}$ олефиновых углеводородов. Поэтому она была подвергнута повторному гидрированию над никелем до бромного числа, равного нулю. После этого фракция была разогнана на колонке Подбильняка, а узкие фракции подвергнуты исследованию.

Данные разгонки и исследования представлены в табл. 1. Характе-

ристики высоковязких масляных фракций даны в табл. 2.

Из приведенных данных нетрудно видеть, что как невязкие, так и вязкие продукты деструкции состоят исключительно из парафиновых углеводородов. Обращает на себя внимание то обстоятельство, что и весьма высокомолекулярные фракции застывают при низких температурах и исключительно в виде стекол. Что касается промежуточных лигроино-керосиновых фракций (состоящих из додеканов — эйкозанов), то они застывают еще ниже (ниже — 90°) и также исключительно в виде стекол.

Т. кип. фракций	Выход фрак- ций в сбъ- емн. %	d_4^{20}	n _D	Данные внализа по спектрам Рамана
До 99° 99—101,5°	14,6 11,6	0,6895	1,3920	
101,5—103,5°	24,0	0,7030	1,3945	Только 2,2,4-триметил-
105,5105,5°	12,6	0,7055	1,3960	
105,5-106,5°	10,3	0,7074	1,3960	Преобладает 2,2,4-, в за-
106,5—107,5°	8,3	0,7100	1,3970	метных количествах 2,3,4
107,5—109°	5,0	0,7102	1,3975	
109—111°	9,3	0,7132	1,3995	Преобладает 2,3,4-

Таблица 2

Т. кип. фракции при 4 мм	d. 20	Мол. вес	n ²⁰ D	Анили- новая точка	Вязкость в °Е		
					при 50°	при 100°	Т. зяст.
150—200° 200—250° >250° (остаток)	0,824 0,833 0,8801	339 472,8 1020	1,4 7 00 1,4765 1,4995	109 113 146	3,9 13,4 115,6	1,06 6,6 11,2	—65° стекло —50° » —27° »

В прежних исследованиях полимеры изобутилена представлялись гипотетическими схемами (1), (2) и (3):

$$-C - \frac{C}{C} - C . . .$$
 (1)

$$C - \frac{C}{C} - \frac{C}{C} - C - C - \frac{C}{C} - \frac{C}{C} - C \dots$$
 (2)

Полученные нами данные: отсутствие в изооктановой фракции 2,2,3,3-тетраметилбутана и 2,5-диметилгексана, повидимому, позволяют исключить схемы (2) и (3). Что касается схемы (1)— схемы линейной полимеризации изобутилена,— то она может быть дополнена схемой (4)— схемой кросс-полимеризации на формы, очевидно, отличающиеся низкими температурами застывания.

Как уже одним из нас (4) указывалось ранее, на основании исследований строения полимеров изобутилена, тетрамеры его должны состоять из следующих углеводородов: 2, 2, 6, 6-тетраметил-4-неопентилгентена 3 и 2, 4, 4, 6, 6, 8. 8-гентаметилоненов 1 и 2.

350

Известно также, что полимеризация изобутилена сопровождается реакциями изомеризации полимеров. В диизобутилене, получаемом полимеризацией над серной кислотой, кроме 2,2,4-триметилпентена, присутствуют 2,2,3-триметилпентен и 2,3,4-триметилпентен. Повышение температуры (горячая полимеризация) способствует повышению выхода 2,2,3-триметилпентена и соответственному снижению выхода 2,3,4-триметилпентена (5).

Констатация в октановой фракции гидрюров полимера изобутилена только 2,2,4-триметилпентена и 2,3,4-триметилпентена (в отношении примерно 5:1) свидетельствует, повидимому, о том, что низкотемпературная полимеризация изобутилена (над $AlCl_3$ при -70°), в отличие от высокотемпературной, способствует сдвигу изомеризации

в сторону 2,3,4-триметилпентена.

Менее вероятным нам представляется образование последнего при деструкции под действием $\stackrel{+}{\text{NiH}}$ по схеме:

$$\begin{array}{c|c} CH_3 & CH_3 \\ CH_3 - C - CH = C - CH_3 \rightarrow CH_3 - C - C - CH - CH_3 \rightarrow CH_3 - C = C - CH - CH_3 \\ CH_3 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \end{array}$$

Таким образом, мы приходим к выводу, что структура полимеров изобутилена должна представляться не только схемами (1) и (4), но и (5):

Наличие фрагмента 2,3,4-триметилпентана, как известно, в отличие от 2,2,4-, застывающего в виде стекла, кроме того подтверждается и тем фактом, что димер триизобутилена (C_{24}), получаемый полимеризацией серной кислотой, имеет т. заст. -37° , тогда как соответственный гидрюр низкотемпературного полимера с молекулярным весом 339 (табл. 2) -65° .

Выводы. 1. Точной фракционировкой и анализом по спектрам Рамана показано, что октановая фракция гидрюров, полученных при деструктивном гидрировании полимеров изобутилена, состоит только из 2,2,4-триметилпентана и 2,3,4-триметилпентана в отношении примерно 5:1. Определены физические свойства также и высокомолекулярных гидрюров продуктов деполимеризации.

2. На основании полученных данных уточнена структура полиме-

ров изобутилена.

Поступило 6 XII 1948

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. M. Thomas, W. J. Spark and K. Frolich, J. Am. Chem. Soc., **62**, 276 (1940). ² Я. М. Слободин и Н. И. Матусевич. ЖОХ, **16**, 2077 (1946). ³ R. Schaad, Ind. Eng. Chem., **32**, 762 (1940). ⁴ А. Д. Петров. Синтез и изомерные превращения углеводородов, изд. АН СССР, 1947, стр. 148. ⁵ R. Glasgow and D. Rossini, Ref., **25**, 93 (1946). ⁶ G. Egloff, Phys. Const. of Hydrocarbon, **1**, p. 53 (1939).