ФИЗИОЛОГИЯ РАСТЕНИИ

A. H. MAMOHTOBA

ВЛИЯНИЕ ПРИВИВОК НА КАЧЕСТВЕННЫЕ ИЗМЕНЕНИЯ БЕЛКОВ ПРИВОЯ И ПОДВОЯ

(Представлено академиком Н. А. Максимовым 10 XII 1949)

Получение положительных результатов при скрещивании генетически отдаленных растительных форм, после предварительных прививок между ними, говорит о том, что при прививках в растении происходят глубокие физиологические и биохимические изменения.

Настоящая работа была проведена с целью выяснения вопроса о влиянии прививок на изменчивость в белковом комплексе растений. Прививки производились между несколькими сортами картофеля (Вольтичности производились несколькими сортами картофеля (Вольтичности производились несколькими сортами сорт

ман, Дун-Эрли, Острагис и Розафолия) и томатом (сорт Бизон).

Рядом исследователей отмечено, что наиболее чувствительны для улавливания изменений белков серологические реакции. Поэтому качественные изменения белков привоя и подвоя устанавливались нами путем постановки серологических реакций между белками (глобулиновой фракции), полученными из клубней картофеля и семян томата.

Перекрестные реакции, поставленные между антигенами и антисыворотками томата и картофеля, показали, что данные культуры имеют качественно близкие белки (табл. 1 и 2). В соТаблица 1

Изменение белков томата под влиянием прививок*

Антиген — белок клубней картофеля	Антисыворотка, специ фическая к белкам	
	картофеля	томата
Непривитых растений . Привитых растений (при- вой — томат; подвой —	++++	+
картофель; листья картофеля удалены)	+++	++

^{*} Обозначение интенсивности реакций в настоящей и следующих таблицах: ++++ наиболее сильная реакция, + слабая реакция, ++ и +++ промежуточные реакции.

ответствии с этим между ними наблюдаются слабые положительные реакции. Реакции эти значительно усиливаются в результате прививок, производимых между данными видами растений.

Из табл. 1 видно, что в клубнях картофеля, развивавшихся за счет привоя — томата, белок становится иммунологически более близким белкам томата, чем белок непривитых растений. То же явление наблюдается и в случае, когда привоем является картофель, а подвоем — томат

У плодов томата, образовавшихся за счет привоя-картофеля, белок становится иммунологически более близким белкам картофеля, притом тем более близким, чем меньше листьев подвоя-томата оставлялось на растении.

Изменение белков томата под влиянием прививок

	Антисыворотка, спе- цифическая к белкам	
Антиген — белок семян томата	картофеля	томата
Непривитых растений Привитых растений: привой— томат, подвой— кар-	+	++++
тофель	++	++
листья томата не удалены листья томата удалены		+++

Как показали исследования, меняются не только белки подвоя, но и белки привоя под влиянием подвоя. Томаты, привитые на картофель (табл. 2), имеют белки иммунологически более близкие к белкам картофеля, чем белки непривитых томатных растений.

Таблица 3

Влияние прививок на качественные изменения белков подвоя

Антиген — белок клубней картофеля *	Антисыворот- ка, специфич ная к белку семян томата
Н епривитых растений:	
без адсорбции	+
адсорбированный	_
Привитых растений (при- вой — томат, подвой —	
картофель):	
без адсорбции	++-

* Адсорбция антигена была произведена антисывороткой, специфичной к белку картофеля непривитого растения.

Параллельно увеличению иммунологической сходимости белков между прививаемыми растениями идет уменьшение видовой специфичности их белков. Снижается интенсивность реакции между антигеном привитого растения и антисывороткой, специфичной белкам непривитого растения того же вида (табл. 1 и 2).

Тот факт, что при прививках в растении происходят качественные изменения их белков, подтверждается и данными табл. 3.

Данные табл. 3 показывают, что картофель, развивавшийся за счет привоя-томата, приобретает качественно близкие томату белки, которых нет в непривитых растениях. Поэтому, в антисыворотке, специфичной белкам

непривитых растений, отсутствуют антитела, специфичные этому белку.

При соединении такой антисыворотки с антигеном привитого растения из антигена адсорбируются белки видовой специфичности и не адсорбируются белки, образовавшиеся в растении в результате прививки, в силу чего антиген привитого растения и после адсорбции продолжает положительно реагировать с антисывороткой, специфичной белкам томата.

Таким образом, в результате опытов выяснено, что при прививках происходит качественное изменение белков как привоя, так и подвоя за счет взаимного влияния их друг на друга. Это влияние сказывается не только на вегетативных частях растений, но и на семенах.

Всесоюзный научно-исследовательский институт защиты растений Ленинград

Поступило 21 XI 1949