БИОХИМИЯ

В. Н. ОРЕХОВИЧ, А. С. КОНИКОВА, К. Д. ОРЕХОВИЧ и Н. Н. ДОББЕРТ

О СКОРОСТИ ОБНОВЛЕНИЯ БЕЛКОВ РАЗЛИЧНЫХ ОРГАНОВ И ТКАНЕЙ

(Представлено академиком А. Д. Сперанским I XII 1949)

Хорошо известно, что в живом организме непрерывно идет процесс самообновления составных его частей и что белки, жиры, углеводы и т. д. не остаются неизменными после их синтеза и включения в состав ткани или органа, а подвергаются постоянному обновлению. Естественно, что изучение этих процессов представляется очень важным и необходимым этапом в расшифровке важнейших функций организма. Особый интерес представляют с этой точки зрения белки.

В своих исследованиях мы применили метод меченых атомов для изучения процесса обновления белков различных органов и тканей и отдельных белковых фракций в животном организме. Этому вопросу было посвящено несколько работ Шонгеймера и сотрудников (¹), которые применяли меченые аминокислоты и тем самым изучали только интенсивность включения данной аминокислоты в белки различных органов и тканей, а не суммарную интенсивность обновления белков. Уссинг и Крог изучали суммарное обновление белков органов с помощью тяжелого изотопа водорода (дейтерия), вводимого в виде тяжелой воды, причем эти авторы ограничивались изучением скорости обновления только белков кожи, мышц и всех внутренних органов (суммарно).

Мы при исследовании активности обновления белков различных органов и тканей крыс также применили тяжелую воду и изучили скорость обновления белков всех органов животного, а также отдельных

белковых фракций этих органов.

Тяжелая вода (D_2O) вводилась животным в таких количествах, что в течение нескольких дней концентрация D_2O в жидкостях тела была равна 1%. Затем животные забивались и из всех органов и тканей выделялись белки. Препараты белков длительно обрабатывались для удаления физически связанного тяжелого водорода, после чего доводились до постоянного веса и сжигались. В полученной воде после соответствующей очистки производилось определение атомн. процента дейтерия по плотности флотационным методом.

Полученные данные представлены в табл. 1. Показано, что наиболее быстро обновляются белки печени, значительно медленнее — белки

кожи и мышц. Остальные органы располагаются между ними.

Мы попытались дать характеристику процесса обновления белков не только по включению дейтерия в белки, но также по выключению его из белков различных органов и тканей. С этой целью партия крыс, которая получала в течение 12 дней тяжелую воду, забивалась не немедленно после прекращения введения дейтерия, а через 12 дней после этого.

Органы	Избыток ат-0/0 дейте- рия после введе- ния D₂O	°/ ₀ обновления бе л ков органов	Избыток ат-⁰/о дейтерия после прекращ. введсния D₂О	Разность в %
Печень	0,170 0,167 0,162	23,2 17,0 16,7 16,2 13,7 13,6 11,5	0,109 0,094 0,107 0,079 0,084 0,106 0,078	0,123 0,076 0,060 0,083 0,053 0,030 0,037
Mosr		11,2	0,092	0,020

Как видно из приведенных в табл. 2 данных, скорость выхождения дейтерия из белков органов и тканей иная, чем скорость вхождения. Так например, по скорости вхождения дейтерия почки находятся на пятом месте, а по скорости выхождения они занимают второе место.

Таблица 2

Процент сиижения количества дейтерия в белках различных органов через 12 дней после прекращения введения дейтерия

Останы	⁰/₀ снижения	Органы	% снижения
Печень	53 54 40 38	Легкие	31 30 22 19

Такое же несоответствие между скоростями вхождения и выхождения дейтерия мы наблюдали и в белках легких и желудка. Это объясняется, повидимому, тем, что обмен структурными единицами между органами происходит с различной интенсивностью. Обнаруженное нами непропорционально резкое снижение метки в почках обусловливается не только интенсивным выключением дейтерированных аминокислот, но, повидимому, также разведением метки структурными единицами белка, пришедшими из других органов, имеющих низкую изотопную метку.

Наряду с изучением интенсивности обновления всех белков органов и тканей, нами исследовалась скорость обновления различных белковых фракций одних и тех же органов. Мы считали, что этими исследованиями мы сможем решить вопрос о том, в какой мере скорость обновления всех белков данного органа является специфичной для фракций белков, входящих в состав данного органа. Полученные данные представлены в табл. 3.

Как видно из представленных данных, интенсивность обновления глобулинов крови, печени и кожи практически одна и та же, в то время как интенсивность обновления коллагена кожи значительно ниже, чем глобулинов кожи. Таким образом, скорость обновления белков в каждом данном органе различна для разных белковых фракций.

Нами исследовалось с помощью тяжелой воды обновление белков различных органов не только у взрослых нормальных крыс, но также у новорожденных крысят и матери. Для проведения этих опытов беременная крыса получала в течение 12 дней до рождения крысят тяженов

Интенсивность обновления отдельных белковых фракций различных органов

Белки		Избыток ат-⁰/₀ дейтерия	% обновле- ния
Белки крови		0,181	18,1
Глобулины крови		0,148	14,8
Глобулины печени		0,137	13,7
Глобулины кожи		0,138	13,8
Альбумины и глобулины		0,177	17,7
Коллаген кожи		0,132	13,2
Проколлаген кожи		0,123	12,3
Оссеин		0.115	15,5
Белки мышц		0.101	10,1
Миоген		0.089	8,9

лую воду. После рождения крысят в тот же день эти подопытные животные были забиты и в белках, выделенных из органов новорожденных крысят и матери, определялся избыток содержания дейтерия. Данные приведены в табл. 4.

Таблица 4 Интенсивность обновления белков в ат-0/0 дейтерия

	Избыток ат-%		% обновления белка	
Ткань	мать	новорожд. крысята	мать	новорожд. крысята
Кожа	0,070 0,187 — 0,070	0,236 0,254 0,264 0,252	7,0 18,7 7,0	23,6 25,4 26,4 — 25,2

Как видно из данных табл. 4, интенсивность обновления белков кожи и мышц матери значительно ниже, чем скорость обновления белков, кожи и мышц нормальных взрослых крыс (табл. 1). Это говорит о резком снижении интенсивности обновления белков мышц и кожи в период беременности. Обновление белков внутренних органов у матери не изменяется. Белки всех тканей новорожденных крысят имеют почти одну и ту же величину избытка дейтерия, причем значительно более высокую, чем белки любых тканей матери. Это объясняется, возможно, тем, что все белки органов и тканей эмбрионов заново строятся из свободных аминокислот и что при этом не используются готовые белки тканей материнского организма.

Институт биологической и медицинской химии Академии медицинских наук СССР Поступило 31 XI 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. Schoenheimer, The Dynamic State of Body Constituents, Harv. Univ., 1942.