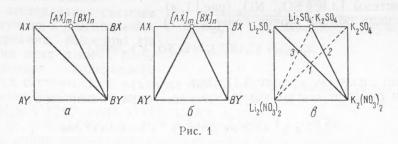
XUMUS

Г. А. БУХАЛОВА, М. Л. ШОЛОХОВИЧ и А. Г. БЕРГМАН


КОМПЛЕКСООБРАЗОВАНИЕ И ОБМЕННОЕ РАЗЛОЖЕНИЕ В ТРОЙНОЙ ВЗАИМНОЙ СИСТЕМЕ ИЗ СУЛЬФАТОВ И НИТРАТОВ ЛИТИЯ И КАЛИЯ

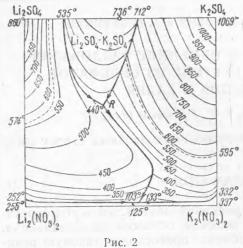
(Представлено академиком Г. Г. Уразовым 181 1950)

В случае образования на одной из боковых двойных сторон тройной взаимной системы

$$AX + BY \rightleftharpoons AY + BX$$
 (I)

соединения-комплекса, наряду с реакцией обмена, происходит реакция комплексообразования, т. е. реакция образования соединения. Если свободная энергия реакции обмена превосходит таковую реакции комплексообразования, то образуются системы диагонального типа; в противоположном случае — адиагонального типа. Это находит отражение в топологии равновесной диаграммы тройной взаимной

системы, а именно, системы диагонального типа триангулируются согласно схеме рис. 1, a, адиагональные — согласно схеме рис. $1, \delta$ (¹). Очевидно, что диагональный и адиагональный типы являются топологическими изомерами.


Расчеты свободных энергий реакций по уравнению

$$\Delta F = \Delta H - T \Delta S \tag{II}$$

представляют большие трудности ввиду отсутствия энтропийных констант. Но так как энтропия при реакциях обмена изменяется незначительно, то член $T\Delta S$ в уравнении (II) по абсолютной величине обычно значительно меньше ΔH (²). Кроме того, как показала H. К. Воскресенская (²) непосредственными расчетами величин ΔF и ΔH в широком интервале температур, для 7 взаимных систем знаки ΔF и ΔH совпадают при температурах окончательной кристаллизации. При малых величинах ΔH член $T\Delta S$ может превосходить величинах ΔH член ΔH член ΔH превосходить величинах ΔH член ΔH член ΔH превосходить величинах ΔH член ΔH член ΔH превосходить величинах ΔH член Δ

чину ΔH и тем самым изменить знак уравнения (II). Поэтому в большинстве случаев можно пользоваться условными термохимическими эффектами реакций обмена и комплексообразования, вычисленными по теплотам образования солей, которые обычно даются для 25°. Это положение о направлении реакции обмена в сторону выделения тепла подтверждается обширными работами А. Г. Бергмана и его сотрудников *.

Для того чтобы воспроизвести расчет величин условных термохимических эффектов реакции обмена и комплексообразования, т. е. заранее определить совокупность триангулирующих элементов системы, необходимо знание теплот образования солей, составляющих

данную систему, и теплоты образования комплекса. Теплоты образования большинства простых солей приводятся во многих справочнитермохимических ках(3), но теплот образования комплексов типа двойных солей известно весьма немного. Поэтому изучение системы Li, K || SO₄, NO₃ представляет исключительинтерес. Выполненное Н. К. Воскресенской и Г. А. Бухаловой определение теплоты образования Li₂SO₄·K₂SO₄ дает возможность произвести расчет триангулирующих элементов системы. По данным указанных авторов, теплота образования $Li_2SO_4 \cdot K_2SO_4$ из образующих со-

лей составляет $2,23\pm0,01$, а из элементов 687,24 ккал. Ниже мы приводим расчет стабильных триангулирующих сечений

для системы Li, $K \parallel SO_4$, NO_3 (рис. 1, 8). Реакции обмена (гочка конверсии 1)

$$K_2SO_4 + Li_2(NO_3)_2 = Li_2SO_4 + K_2(NO_3)_2$$

отвечает тепловой эффект 5,17 ккал. Для реакции комплексообразования (точка конверсии 2)

$$2 {\rm K_2 SO_4} + {\rm Li_2 \, (NO_3)_2} = {\rm Li_2 SO_4} \cdot {\rm K_2 SO_4} + {\rm K_2 \, (NO_3)_2}$$

получается величина 7,40 ккал. Расчеты по уравнению (точка конверсии 3)

$$\text{Li}_2 (\text{NO}_3)_2 + \text{Li}_2 \text{SO}_4 \cdot \text{K}_2 \text{SO}_4 = 2 \text{Li}_2 \text{SO}_4 + \text{K}_2 (\text{NO}_3)_2$$

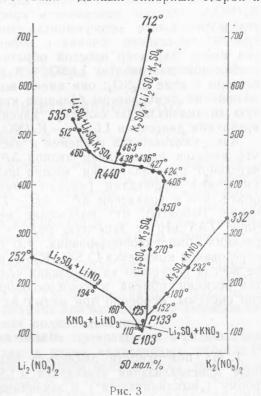
дают 2,94 ккал.

Следовательно, триангулирующими сечениями по расчету должны бы быть сечения $K_2(NO_3)_2 - Li_2SO_4 \cdot K_2SO_4$ и $Li_2SO_4 - K_2(NO_3)_2$.

Однако, как показало экспериментальное исследование диаграммы ликвидус данной системы (рис. 2), комплекс Li₂SO₄·K₂SO₄ выкристаллизовывается из расплавов лишь при температурах выше 440°точки двойного подъема или "проходной" точки, по А. Г. Бергману. Следовательно, соединение не оказывает никакого влияния на триан-

^{*} См. серию статей по обменному разложению в отсутствие растворителя в ЖОХ, Изв. сектора физ. хим. анализа и др. 288

гуляцию системы. Поэтому триангулирующим сечением системы яв-


ляется лишь диагональ $\text{Li}_2 \text{SO}_4 - \text{K}_2 (\text{NO}_3)_2$. Исследование проведено визуально-политермическим методом с использованием химически чистых солей. Хотя LiNO_3 начинает медленно разлагаться выше 475—500°, а KNO₃ выше 550—580°, тем не менее определение плавкости в расплавах взаимной системы с их участием можно было производить до 500-550°. Изотермы 600° и выше экстраполированы на основании данных бинарных сторон и

проекции кривых совместной кристаллизации на сторону $Li_2 (NO_3)_2 - K_2 (NO_3)_2$. Составы выражены в молекулярных

процентах.

Диаграммы плавкости двойных систем, ограничивающих квадрат состава, исследованы разными авторами. Система $Li_2SO_4 - K_2SO_4$ (4) содержит конгруентное соединение Li₂SO₄·K₂SO₄ (т. пл. 736° по нашим данным). Система $LiNO_3 - KNO_3$ (5) — по нашим данным эвтектика отвечает 43% LiNO₃ и 125°. Система $Li_{2}(NO_{3})_{2}$ — $Li_{2}SO_{4}(^{6})$ — эвтектика соответствует 4% Li₂SO₄ и 252°, что и подтверждено нашим исследованием. Система $K_2SO_4 - K_2 (NO_3)_2 (^7)$ — эвтектика отвечает $6\% \text{ K}_2\text{SO}_4$ и 332°; наши исследования подтверждают эти данные.

Для исследования системы было изучено 2 диагональных и 9 внутренних разрезов. На основании этих данных была

синтезирована поверхность ликвидуса системы. Как видно из рис. 2, она содержит 5 полей кристаллизации, величины площади которых: K_0SO_4 43,2%; Li_2SO_4 42,7%; Li₂SO₄·K₂SO₄ 12%; KNO₃ 0,8%; LiNO₃ 1,3%.

Для уточнения положения и температур нонвариантных точек, а также линий совместной кристаллизации была сделана проекция древа кристаллизации системы на бинарную сторону $\operatorname{Li}_2(\operatorname{NO}_3)_2$ — $K_2(NO_3)_2$ (рис. 3). Значение и состав нонвариантных точек системы см. табл. 1.

Таблица 1

Точка	Характер точки	T-pa в °C	Состав в мол. %			
			1.i ₂ SO ₄	Li ₂ (NO ₃) ₂	$K_2(NO_3)_3$	Равновесные фазы
E	Эвтектическая.	103	1	42,5	56,5	KNO ₃ , LiNO ₃ , Li ₂ SO ₄
P	Переходная	133	1	40,5	58,5	KNO ₃ · Li ₂ SO ₄ , K ₂ SO ₄
R	Проходная	440	53,5	4,5	42	Li ₂ SO ₄ · K ₂ SO ₄ , Li ₂ SO ₄ , K ₂ SO ₄

Хотя поле кристаллизации комплекса $\text{Li}_2\text{SO}_4\cdot\text{K}_2\text{SO}_4$ представлено в системе довольно большой площадью, однако оно имеет треугольную форму и заканчивается проходной точкой R (рис. 2). В точке R ни при каких условиях не происходит полного застывания расплавов, а только изменяется характер кристаллизующихся фаз в результате

разложения соединения Li₂SO₄·K₂SO₄ на компоненты.

Как уже подчеркивалось, данные энергетических расчетов указывают на стабильность сечений $\text{Li}_2\text{SO}_4 \cdot \text{K}_2\text{SO}_4 - \text{K}_2 (\text{NO}_3)_2$ и $\text{Li}_2\text{SO}_4 - \text{K}_2 (\text{NO}_3)_2$. Однако поверхность кристаллизации системы, полученная в результате эксперимента, показывает, что в системе нет ни одного стабильного сечения с перевальной эвтектической точкой и она имеет характер простой обратимой взаимной системы с более стабильной диагональю $\text{Li}_2\text{SO}_4 - \text{K}_2 (\text{NO}_3)_2$. На это указывает ход изотерм в поле Li_2SO_4 : они имеют выпуклость и приобретают по мере понижения температуры большую кривизну, образуя пространственную антиклинальную складку, максимум которой расположен в направлении диагонали $\text{Li}_2\text{SO}_4 - \text{K}_2 (\text{NO}_3)_2$.

Как указывалось в введении к настоящей статье, вследствие того, что имеется параллелизм знаков ΔF и ΔH при температурах окончательной кристаллизации, можно пользоваться условными термохимическими эффектами реакций обмена. Это основывается на том факте, что в уравнении $\Delta F = \Delta H - T\Delta S$ член $T\Delta S$ имеет малое значение. Вероятно, что положение неприменимо к данной системе. Член $T\Delta S$ играет заметную роль в уравнении свободной энергии реакции комплексообразования. Это тем более вероятно, что теплота образования комплекса $\text{Li}_2 \text{SO}_4 \cdot \text{K}_2 \text{SO}_4$ весьма невелика. Следовательно, не всегда возможно на основании условных термохимических эффектов реакции сбмена и комплексообразования априорно определить

тип системы, особенно при малых их значениях.

Выводы

1. На поверхности ликвидуса взаимной системы $\text{Li}_1K \parallel \text{SO}_4, \text{NO}_3$ поле кристаллизации комплекса $\text{Li}_2\text{SO}_4 \cdot \text{K}_2\text{SO}_4$ имеет треугольную форму ("выклинивается") и заканчивается точкой двойного подъема ("проходной" точкой).

2. Вопреки энергетическому расчету, система имеет характер простой обратимой взаимной системы с триангулирующей диаго-

налью $Li_2SO_4 - K_2(NO_3)_2$ небинарного характера.

3. Результаты исследования выдвигают проблему определения термохимических констант для расчета свободных энергий реакций в солевых системах, ибо имеющиеся данные не всегда дают возможность априорно определить тип системы при малых условных тепловых эффектах реакций обмена.

В заключение считаем необходимым выразить благодарность доктору химических наук Н. К. Воскресенской за интерес к работе.

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР

290

Поступило 12 XI 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Г. Бергман, Г. А. Бухалова, Е. И. Банашек и Е. И. Сперанская, Адиагональные типы взаимных систем, Рефераты н.-и. работ за 1945 г., ОХН АН СССР, стр. 34—38 (1947). ² Н. К. Воскресенская, Изв. Секторафиз.-хим. анализа, 18, 160 (1949). ³ F. R. Bichowsky and C. Rossini, Thermochemistry of the Chemical Substances, N. Y., 1936. ⁴ E. Nacken, N. Jahrbuch f. Miner., Geol., Paläont., 24, 34 (1907). ⁵ H. Harkins and R. Klark, Journ. Am. Chem. Soc., 37, 1816 (1915). ⁶ M. Amadori, Atti Accad. Lincei, 22, 2, 333 (1913). ⁷ M. Amadori, Atti d. Instit. Veneto, 72, 2, 893 (1913).