КРИСТАЛЛОГРАФИЯ

В. А. БАЖЕНОВ и В. П. КОНСТАНТИНОВА

пьезоэлектрические свойства древесины

(Представлено академиком В. Н. Сукачевым 18 1 1950)

Настоящая работа проводилась в связи с открытием А. В. Шубниковым (1) пьезоэлектрических свойств в древесине, представляющих большой интерес для древесиноведения и кристаллографии. Предварительные опыты, проведенные авторами с различными породами древесины (сосна, ель, лиственница, дуо, бук, ясень, береза, груша, самшит, осина и др.), неизменно обнаруживали пьезоэлектрический эффект. В после-

дующем были проведены более детальные исследования, результаты которых излагаются ниже.

Пьезоэлементы, работающие на изгиб и сжатие (растяжение), представляли собою образцы древесины с приклеенными к двум противоположным граням электродами. Для приклейки электродов применялась замазка из смеси пчелиного воска и канифоли (2:1). Высущенные при температуре 100° до постоянного веса образцы предварительно выдерживались некоторое время в расплаве этого состава с целью защиты от быстрого увлажнения в воздухе, так как при увлажмении древесина теряла способность электризации.

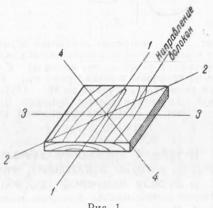


Рис. 1

На изгиб испытывались пьезоэлементы в виде квадратных пластинок со стороной 50 мм и толщиной от 1 до 4 мм, у которых одним из электродов являлась квадратная стальная пластинка толщиной в 1 мм. а вторым — наклейка из тонкой фольги. Оба электрода имели площадь. равную площади образца. Стальная пластинка, подклеенная к деревянному образцу, при совместном изгибе с ним позволяла получать в нем однозначный электрический эффект, обязанный напряжению, возникающему в этих условиях по направлению, параллельному плоскости изгиба.

Пьезоэлементы изгибались сосредоточенной в центре силой при помощи простого рычажного устройства с двумя опорами, жестко укрепленными на электрически изолированной площадке, защищенной металлическим кожухом от посторонних помех. Образец укладывался на опорах и поочередно изгибался в различных положениях, отмеченных на рис. 1 одинаковыми цифрами. Нагружение образца характеризовалось его прогибом в центре, измерявшимся при помощи индикатора с ценой деления 0,01 мм. Для измерения поляризации образца применялся струнный электрометр, нить которого через экранированный ввод соединялась с электродом на нижней грани образца. Второй электрод заземлялся. Электрометр включался по обычной схеме. На ножи

электрометра подавалось напряжение \pm 150 в.

На рис. 2, а показана типичная диаграмма изменения величины и знака заряда, полученного при разгрузке образца, обращенного стальной пластинкой вверх при прогибе 0,2 мм. Заряд снимался с электрода, приклеенного к грани, обращенной к коре ствола. При этих условиях в образце возникали напряжения сжатия. Положения нулевого заряда соответствовали изгибу строго вдоль и поперек волокон.

Влияние направления волокон на появление зарядов того или иного знака окончательно было установлено путем испытания образцов из древесины с большим естественным косослоем (порядка 15°). У всех 9 испытанных образцов нулевые направления совпали с направлением

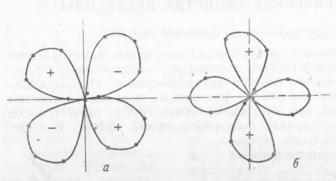


Рис. 2. a — диаграмма изменения величины и знака заряда в зависимости от позиций изгиба пьезоэлемента (по отношению к направлению волокон); δ — диаграмма изменения величины и знака заряда биморфного пьезоэлемента при различных позициях изгиба. Образец составлен из двух одномиллиметровых буковых пластинок, вырезанных с направлением волокон по диагоналям

волокон, а не с осью ствола дерева. При изгибе образцов с направлением волокон по одной из диагоналей диаграмма имела вид, изображенный на рис. 2. 6.

Количество электричества в образцах при поляризации находилось как произведение электростатического напряжения на сумму емкостей пьезоэлемента и установки. Емкость измерялась при помощи мостика с точностью до 0,1 рF. различных пьезоэле-

В табл. 1 приводятся данные об электризации ментов, которые показывают, что:

1. Между величиной прогиба элемента и его поляризацией суще-

ствует зависимость, которая может быть принята линейной.

2. Радиальные и тангенциальные образцы сосны, вырезанные из кряжа по направлению одного радиуса, проходящего через их центры, поляризуются одинаково. Образцы, вырезанные по радиусу ствола между сердцевиной и периферией, электризовались несколько больше, обнаруживая тенденцию к постепенному увеличению до некоторого максимума, что можно объяснить влиянием изменений плотности древесины по радиусу ствола.

3. Толщина образцов не оказывает влияния на плотность образую-

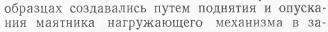
шихся зарядов.

В конце табл. 1 приводятся данные о величине эффекта на биоморфных элементах, приготовленных из древесины бука склеиванием двух квадратных радиальных пластинок толщиной 1 мм, с волокнами, пересекающимися по диагоналям и фольговыми электродами с обеих сторон. Диаграмма правила знаков для этих образцов была такая же, как изображенная на рис. 2, б. Весьма важно заметить, что торцовые срезы, как показали опыты, не обладают способностью к электризации.

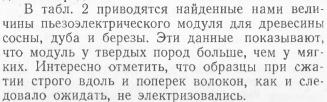
С целью выяснения компонента древесины, сообщающего ей пьезоэлектрические свойства, нами была испытана древесина сосны в третьей стадии поражения грибом Merulius lacrymans, примерно на 80% состоящая только из лигнина (деструктивный тип гнили), а также древесина березы и осины в третьей стадии поражения коррозионным типом гнили от гриба Tomes fomentarius, содержавшая около 75—80% целлюлозы. В первом случае отмечался весьма незначительный пьезоэлектрический эффект, тогда как во втором случае он был значительным и несколько превышал величину эффекта в нормальной древесине. Для

Электризация пьезоэлектрических элементов, работающих на изгиб

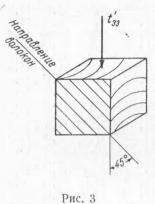
Порода	Характеристика а образка	Толщина образця в мм	Емкость в рF		Напряжение макс. поля-		Колич. электричества в 10 ² абс. ед., обра- зующееся на гранях		
			образца	образца с установкой	рызации в вольтах при величине прогиба в мм		образца разм. 50 × 50 мм в положении етс макс. поляризации при величине прогиба в мм		
-					0,1	0,2	0,3	0,1 0,2	0,3
Сосна	Радиальный	2,5	22,2	40,8	-0,672 ± 0.660	$-0,925 \\ +0,771$	$\begin{bmatrix} -1,02 \\ +0,910 \end{bmatrix}$	-8,35 $-11,$ $+8,10$ $+$ 9,	$\begin{array}{c} 4 & -12,5 \\ 5 & +11,6 \end{array}$
	PRINT PROPERTY AND ADDRESS.	2,0	30,0	48,6	-0.634	-0.975	-1,100	-9,28-14 +8,65+11	2 - 16,0
	CONTRACTOR OF THE PARTY OF	2,0	24.0				-0,975	-7.2 -11	2 - 12,
	THE PERSON NAMED IN	2,3	26,0		-0.635	-0.803	-1,020	-8.5 -10	7 - 14,6
	oungion -		non-the		+0,410	+0,728	+0,955	+5,5 + 9	7 + 12,
	Променяюн	2,0	29,0	47,6	-0,659	-0.853	$-1,170 \\ +1,100$	-9.4 - 12	$\begin{array}{c} 2 - 16, \\ 3 + 14, \end{array}$
	Промежуточ-	2.0	27.7	46.3	-0,683			-9.5 -14	5-16.9
	радиальными	2,0	21,1	10,0	+0.546	+0.841	+1,000	+7.5 + 11	6 + 13,
	и тангенци-	1,9	30,4	49,0	-0.780	-1.02	-1,220	-11.4 - 15	0 - 17
	альными	1.0	70.0	00.7	+0.682	+0,955	+1,180	+10.0 + 14 $-11.7 - 15$	0+17,3
	CHE TREASURED !	1,0	50,8	69,4			-1,020	-11,7 -13 $+10,4$ $+19$	
	English Market 18	1,5	38.2	56.8	-0.682	-1.025	-1,160	-11,6-17	5 - 20.0
	ESCHOLOR PROPERTY	-,0	, ,		+0,705	+1,090	+1,181	+12,0+18	,6+20,1
	OHE MENTANAR	4,0	12,6	31,2	-1,030		-2,00	-9,6-14	
	o saonniko.em	4,0	13.0	04 0	+1,140 $-1,140$	+1,65	$+2,00 \\ -1,83$	+10.7 + 15 $-10.8 - 13$	
	116	4,0	15,0	51,0		+1,42	+1,72	+10.8 + 13	
		4,0	13,0	31.6	-1,140	-1,60	-1,880	-10,8 - 15	
					+1,100	+1,43	+1,72	+9,5+13	
	DO ROLL BANK	2,0	29,8	49,4	-0.853	-0,975	-1,10	-12.0 -14 + 8.7 +10	
		2,2	23,3	44 0	-0,610	+0.682			,0+10, $,2-14,$
	proteint	2,2	40,0	41,0		+0.975		-7,7-12 + 9,2+11	$\frac{1}{4} + 17$
	Тангенциаль-	1,3	40,8	59,4	-0.488	-0.805	-1.12	-8.7 - 14	3 - 18
**	ный	0 05	04.0		+0,387	+0,682	+0,795	+6,9+13	,4+14,
Кавказ- ская пихта	Средн. арифм. из 5 обр.	2,65	21,0	39,7				-6,8 -12 + 7,0 +12	$, 6 = 14, \\ , 8 + 14, $
Бук	То же	3,63	20,3	39,4			THE C	-13,3 -20	
Дуб	То же	2,0	28,0	46,6		1	- Marie	$\begin{array}{c} +13.5 +20 \\ -13.0 -18 \\ +13.0 +18 \end{array}$	0 - 24
Бук	Средн. арифм. из 4 биморфн. обр.		21,8	40,4		mil se	erspele pigotst	+18,0 +18 -20 +19	,6


Примечания. 1. Заряды измерялись на гранях образца, обращенных к коре ствола в момент его изгиба по диагоналям. 2 Максимальная электризация с отрицательным знаком возбуждалась при растяжении пьезоэлемента по диагонали «2—2», а максимальная с положительным знаком— при сжатии по диагонали «4—4» (см. рис. 1).

сравнения исследовались пластинки из целлюлозы: с беспорядочно перемешанными волокнами (картон) и с сохранением расположения их в дереве, но приготовленные химической обработкой. Пластинки из беспорядочно перемешанных целлюлозных волокон вследствие потери


ориентации не обнаруживают определенно выраженного эффекта, в отличие от мацерированных химическими методами пластинок, обладающих значительным эффектом, близким к эффекту в нормальной древесине.

Таким образом, наши исследования указывают, что пьезоэлектрические свойства в древесине связаны с присутствием в ней целлюлозы.


Согласно классификации А. В. Шубникова, древесина должна быть огнесена к разряду пьезоэлектрических текстур первого рода с осью текстуры, направленной вдоль волокон. Для определения пьезомодуля в этом случае А. В. Шубниковым (1) дается уравнение $I_{\rm max} = ^1/_2 d_{133} t_{33}$ и предлагается форма образца, в котором ось текстуры направлена по диагонали электризующихся граней. На рис. З изображен такой образец применительно к древесине. Для сжатия таких пьезоэлементов требовались значительные усилия, которые осуществлялись на машине ИМ-4Р ЦНИИМАШ. Один из электродов пьезоэлемента через экранированный ввод соединялся с нитью электрометра. Второй электрод и корпус машины заземлялись. Мгновенные механические напряжения в

данных пределах.

Величина пьезоэлектрического модуля является новой физической характеристикой древесины, показывающей степень ориентации элементов ее структуры, что имеет большое значение для углубленного изучения технических свойств древесины. Полученные результаты вполне согласуются с теорией А. В. Шубникова о пьезо-

электрических текстурах.

. Таблица 2 Величины пьезоэлектрического модуля d_{133} в древесине

Порода древесины	Число измерений	Пьезовлектрич. модуль d_{133} в 138 абс. ед.	Пределы колебаний пьезомодуля в 10° абс. ед.	Примечанья	
Сосна	15	0,311	0,183 - 0,450	Определения произ-	
Береза	14	0,455	0,320 0,665	водились на образ- цах с размерами	
Дуб	9	0,502	0,395 - 0,630	$h \times a \times b$ в см $1 \times 2 \times 2$, $2 \times 2 \times 2$ и $1 \times 1,5 \times 2$	

Работа была начата в Институте кристаллографии АН СССР и продолжена в лаборатории физики древесины Института леса АН СССР. Авторы приносят глубокую благодарность А. В. Шубникову за ценные указания и советы и Ф. Ф. Садовскому за помощь в подготовке аппаратуры и проведении экспериментов.

Институт леса и Ииститут кристаллографии Академии наук СССР Поступило 27 XII 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Шубников, Пьезоэлектрические текстуры, изд. АН СССР, 1946. 286