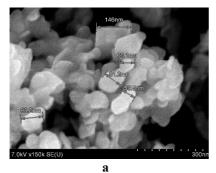
РАЗРАБОТКА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ МgO С ИСПОЛЬЗОВАНИЕМ ЗОЛЬ-ГЕЛЬ ТЕХНОЛОГИИ

Эльшербини С.М.Э. (аспирант)

Гомельский государственный технический университет имени П.О. Сухого Республика Беларусь


Актуальность темы обусловлена нарастающими проблемами загрязнения водоемов нефтепродуктами и другими вредными веществами, что требует разработки эффективных методов очистки сточных вод. Композитные материалы на основе оксида магния могут стать перспективным решением благодаря своим уникальным сорбционным свойствам [1]. Изучение их структуры и морфологии имеет важное значение для повышения эффективности фильтрации и защиты окружающей среды.

Цель работы – является разработка технологических этапов получения керамических композиционных матриц на основе оксида магния с добавлением наночастиц оксидов металлов для оценки их сорбционных свойств в отношении нефтепродуктов.

Анализ полученных результатов. В ходе исследования были синтезированы таблетки на основе оксида магния, демонстрирующие высокую степень дисперсии и однородности. Процесс формирования золя, включая добавление нитрата иттрия, способствовал созданию гелей с заданными свойствами, что в дальнейшем улучшило сорбционные характеристики полученных материалов. Метод сканирующей электронной микроскопии (СЭМ) подтвердил, что оксид иттрия модифицирует внутреннюю структуру ксерогеля, образуя непрерывное покрытие на глобулах MgO [2].

Агломераты оксида иттрия имели размеры от 59 до 146 нм (см. рис. 1а), что указывает на высокую степень дисперсии и потенциальную эффективность в сорбционных процессах. Экспериментальные результаты показали [3], что образцы с низкой концентрацией легированных наночастиц металлов обладают большей абсорбционной способностью по сравнению с образцами с высокой концентрацией (см. рис. 1б). Это может быть связано с оптимальным соотношением между пористостью и доступностью активных сайтов для взаимодействия с нефтепродуктами.

Данные о изменении массы таблеток в зависимости от их способности к поглощению нефтепродуктов подтвердили высокую эффективность синтезированных материалов. Образцы, находившиеся в контакте с сырой нефтью и машинным маслом, продемонстрировали значительное поглощение, что свидетельствует о их пригодности для применения в системах очистки воды. Эти результаты подчеркивают перспективность использования композитов на основе оксида магния в области экологической безопасности и водоочистки.

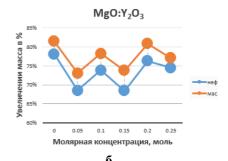


Рисунок 1-a) СЭМ-изображение микропорошка ксерогеля сформированного на основе золя из водной дисперсии MgO. Ксерогель обработан на воздухе при $T=600\,^{\circ}$ C в течение $1\,^{\circ}$ ч, содержащего нитрат иттрия $0,05\,^{\circ}$ моль на $1\,^{\circ}$ моль золя, 6) Изменения массы таблеток состава MgO: Y_2O_3 в зависимости от впитывающей способности нефтяных материалов (сырое нефтью и машин масло).

Заключение. На основании полученных результатов можно заключить, что образцы с низкой концентрацией легированных наночастиц металлов обладают более высокой абсорбционной способностью, в то время как высокая концентрация уменьшает эту способность из-за увеличения прочности таблеток. Также отмечается, что высокая температура термообработки негативно сказывается на абсорбционных свойствах. Эффективные сорбционные характеристики получаемых ксерогелей делают их перспективными для разработки сорбентов, предназначенных для очистки от нефтепродуктов.

Благодарность. Выражаю признательность к.т.н. $M.\Phi.C.X$. Аль-Камали, и научному руководителю д.т.н., профессору Бойко A.A. за консультацию и помощь при проведении данного исследования.

Литература

- 1. Аль-Камали, М. Ф. С. X. Композиционные материалы на основе оксида магния для сорбции нефтепродуктов, полученные золь-гель методом / М. Ф. С. X. Аль-Камали, А. А. Бойко, С. М. Э. Эльшербини // Вестник Гомельского государственного технического университета имени П. О. Сухого: научнопрактический журнал. -2023. -№ 3. С. 28-35.
- 2. Аль-Камали М. Ф. С. X. Мишени SiO₂: CuO (Cu°) для нанесения тонких пленок ионно-лучевым распылением, полученные золь-гель методом / М. Ф. С. X. Аль-Камали, А. А. Бойко, X. А. С. Аль-Шамири // Докл. Нац. акад. наук Беларуси. -2022. T. 66, № 3. C. 348–355.
- 3. Аль-Камали М.Ф.С.Х. Мишени (MgO: CoO И ZnO: CoO), получаемые золь-гель методом для вакуумного напыления/М.Ф.С.Х. Аль-Камали, А.А Бойко// X Всероссийская конференция (с международным участием) «Высокотемпературная химия оксидных систем и материалов»: Сборник тезисов докладов, г. Санкт-Петербург, 25 28 сентября 2023 г. СПб.: ООО «Издательство «ЛЕМА», 2023. с. 142-144.