химия

В. А. ШУШУНОВ, А. П. АУРОВ и В. А. ГОРИНОВ

ВЛИЯНИЕ ЭФИРОВ НА СКОРОСТЬ РЕАКЦИИ МАГНИЯ С ПАРАМИ ГАЛОИДАЛКИЛОВ

(Представлено академиком Б. А. Казанским 21 VII 1949)

Автокатализ топохимических процессов обусловлен понижением энергии активации гетерогенных реакций, протекающих на поверхности раздела исходной и вновь образующейся фаз.

В самом начале реакции на повержности исходной твердой фазы отсутствуют зародыши вновь образующегося химического соединения. При этом условии гетерогенная реакция протекает с энергией акти-

Через некоторое время от начала реакции в результате химичевации E_1 . ского превращения возникают зародыши новой фазы. Энергия активации химической реакции, протекающей на поверхности раздела исходной и вновь образующейся твердых фаз, будет E_1' , причем (1) $E_1 > E'_1$

Это различие в энергии активации ведет к тому, что скорость топохимической реакции будет расти с величиной поверхности новой фазы. Скорость гетерогенного процесса при этом будет увеличиваться со временем.

Если за реакцией следить по падению давления, то, как было по-

казано ранее
$$(^2,^3)$$
, мы будем иметь $-\Delta p = bt^3$. (1)

Самоускорение топохимической реакции будет выражено тем от четливее, чем больше разность $E_1 - E_1' = \Delta E$. Значение ΔE от состава исходной фазы, природы и концентрации примесей в газе и т. д. Эти факторы, понижая E_1' , могут сказываться не только на значении ΔE , но в той или иной мере уменьшать также энергию активации E_1 . Если это понижение происходит так, что $E_1\cong E_1'$, то мы не сможем обнаружить самоускорение топохимической реакции.

Такое явление мы наблюдали при катализе эфирами реакции маг-

ния с парами галоидалкилов, изученной нами ранее (4).

Реакция магния с галоидзамещенными углеводородов идет с заметной скоростью только при повышенной температуре (5,6).

Если же синтез магнийорганических соединений проводится в эфирной среде, то реакция хорошо идет уже без нагревания. На основании этого было сделано предположение (7), что эфиры, а также третичные амины в данном случае являются катализаторами.

До последнего времени, однако, не было предпринято систематических исследований, посвященных изучению катализа эфирами реакции образования магнийорганических соединений. В настоящей работе 5*

мы попытались восполнить этот пробел в кинетике гетерогенных химических реакций.

Мы изучили влияние добавок некоторых эфиров на кинетику ре-

акции магния с парами СН₃Вг и С₂Н₅Вг.

Реакция проводилась на металлической пленке, полученной путем перегонки магния в высоком вакууме.

За интенсивностью химического процесса мы следили по падению давления паров галоидалкила, так как продукт реакции обладает весьма малой упругостью пара.

Наличие органических соединений магния в конечном продукте

реакции было установлено с помощью кетона Михлера.

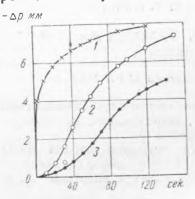


Рис. 1. Кинетические кривые реакции $Mg + C_2H_5Br + (C_2H_5)_2$ О. Кривые I_1 и 2 сняты при $P_{C_2H_4Br} = 20$ мм рт. ст. и $T = 60^\circ$ с добавками 18 и 2,5 мол. % $(C_2H_5)_2$ О. Для сравнения приведена кинетическая кривая 3, снятая с чистым

 C_2H_5 Вг при тех же условиях

Проведенный нами количественный анализ позволил объяснить 95—100% падения давления паров смеси галоидал-кила с эфиром образованием магнийорганических соединений.

Реакция магния с чистым парообразным бромистым этилом протекает автокаталитически. С ростом концентрации эфиров в C_2H_5 Вг самоускорение реакции делается все менее и менее заметным. Наконец, при определенном соотношении компонент в смеси паров C_2H_5 Вг и эфира оно совсем исчезает.

На рис. 1 изображено несколько кинетических кривых, которые хорошо

иллюстрируют сказанное.

Концентрация эфира, при которой уже не представляется возможным обнаружить саморазгон реакции, зависит от природы примеси. Так, для этилового эфира эта концентрация близка к 12 мол. %,

а для метил-этилового эфира она равна всего лишь 2,5 мол. %. Скорость образования магнийорганических соединений в наших

опытах чрезвычайно сильно возрастала с добавками эфира. Добавка 1,5 мол. % $CH_3OC_2H_5$ к C_2H_5 Вг при $p_{C_1H_1Br}=10$ мм рт. ст. и $T=20^\circ$ повышает скорость реакции больше, чем в 100 раз, а 6,1 мол. % — больше, чем в 10^7 раз, по сравнению со скоростью реакции $Mg+C_2H_5$ Вг при тех же условиях. Добавки 6,1 мол. % $(C_2H_5)_2$ О или изо- $(C_3H_7)_2$ О увеличивают скорость реакции в 40 раз, а 12 мол. % — в 10^6 раз.

Эти данные хорошо характеризуют каталитическую способность эфиров в реакции образования магнийоргани-

ческих соединений.

Обусловленный добавками эфира сильный рост скорости реакции указывает на то, что при этом происходит весьма значительное понижение энергий активации E_1 и E_1 . С ростом контентрации примеси энергия активации

Рис. 2. Зависимость скорости реакции от температуры. Прямые I и 2 сняты при $p_{\rm C-H-Br}=10$ мм рт. ст. с добавками 12 и 18 мол. % $({\rm C_2H_5})_2$ O

центрации примеси энергия активации E_1 понижается быстрее, чем E_1' , и при определенном содержании эфира в смеси разность $E_1-E_1'=\Delta E$

становится весьма малой, что служит причиной исчезновения саморазгона реакции.

В определенной области температур к топохимическим процессам

применим закон Аррениуса

$$w = Ae^{-E/RT}. (2)$$

Исследуя температурную зависимость скорости реакции образования магнийорганических соединений со смесями различного состава, мы установили, что E в уравнении (2) закономерно понижается с концентрацией эфира (рис. 2). При значительном содержании эфира в смеси (порядка 20-50 мол. %) термический коэффициент скорости данной реакции весьма мал. Так например, повышение температуры от -40 до 40° сопровождается увеличением скорости реакции магния с парами бромистого этила, содержащего 18 мол. % $(C_2H_5)_2$ О, всего лишь в 4 раза.

B табл. 1 сопоставлены значения E для изученных нами случаев

топохимической реакции $Mg + C_2H_5Br + эфир.$

Таблица 1

Добавлено эфира в мол. % к С₃Н₅Вг	Энергия активации в кал/моль		
	CH3OC3H3	$(C_3H_5)_3O$	изо-(С _в Н ₇) ₂ С
0,0	13 000	13 000	13 000
0,5	12 000		_
1,5	12 000		_
2,6	2 50 0	12 500	12 700
6,1	1 900	10 000	11 00 0
12	1 500	2900	3 000
18	< 1500	2 000	2 500
26	< 1 500	< 1 500	< 1 500
100	< 1 500	< 1 500	< 1 500

Аналогичную картину мы наблюдали при реакции Mg + CH₃Br +

 $+ (C_2H_5)_2O.$

Было обнаружено также, что температурный коэффициент скорости реакции магния со смесью 50 мол. % C_2H_5Br (жидкий) и 50 мол. % $(C_2H_5)_2$ О (жидкий) также близок к единице в интервале изменения температур от — 40 до 30°.

Научно-исследовательский институт химии Горьковского государственного университета Поступило 21 VII 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ M. Volmer, Kinetik der Phasenbildung, Dresden—Leipzig, 1939. ² M. Б. Нейман и В. А. Шушунов, ЖФХ, 22, 145 (1948). ³ М. Б. Нейман и В. А. Шушунов, Кинетический метод физико-химического анализа, изд. АН СССР, 1948. ⁴ В. А. Шушунов и А. П. Ауров, ДАН, 68, № 4 (1949). ⁵ П. Шорыгин, В. Исагульянц и А. Гусева, Вег., 66, 1426 (1933). ⁶ Н. Gilman and R. Вгоwп, Јоигп. Ат. Сhem. Soc., 52, 3330, 5045 (1930). ⁷ В. В. Челинцев, Индивидуальные магнийорганические соединения, М., 1908.