ФИЗИКА

## ю. А. НЕМИЛОВ и Л. И. ГЕДЕОНОВ

## ИССЛЕДОВАНИЕ ЭНЕРГИЙ ПРОТОНОВ, ОБРАЗУЮЩИХСЯ ПРИ БОМБАРДИРОВКЕ ФТОРА И НАТРИЯ ДЕЙТОНАМИ

(Представлено академиком П. И. Лукирским 21 XI 1949)

Мишени, содержащие фтор или натрий, бомбардировались дейтоами с энергией 3,9 Мэв. Образующиеся при этом протоны регистрировались обыкновенной фотопластинкой, перед которой был поставлен алюминиевый фильтр в виде клина с толщиной, эквивалентной от 2 до 60 см воздуха. В результате наблюдались ступени потемнения, соответствующие группам частиц с разной энергией, как это уже описано нами для случаев бомбардировки магния, алюминия и кремния (1,2).

Мишенями служили кусочки платиновой фольги с осажденным на них из взвеси в ацетоне слоем CaF<sub>2</sub> и кусочки такой же фольги с осажденным слоем Na<sub>2</sub>CO<sub>3</sub>, NaBr и NaJ. Получившиеся ступени потемнения на пластинках не так резко отличаются по интенсивности, как это было при облучении магния и алюминия, а потому находить границу каждой ступени с помощью фотометра здесь не удавалось. Измерения производились микрокомпаратором, как и в случае кремния. Измерения были сделаны на 5 пластинках, облученных протонами от фтора, и на 7 — от натрия. Фотографии эти были получены при разных мишенях и при разных экземплярах алюминиевых фильтров. По измеренным пробегам разных групп протонов были определены их энергии (³) и соответствующие энергии реакции. Результаты сведены в табл. 1.

Таблица 1

| Фтор                  |                                                                                                                  |                                                |                                                                                                    | Натрий                                          |                                                                         |                                        |                                                                                 |
|-----------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|
| Группы протонов       |                                                                                                                  |                                                |                                                                                                    | Группы протонов                                 |                                                                         |                                        |                                                                                 |
| Ne.<br>n/n.           | Энергия<br>группы в Мээ                                                                                          | Реакция                                        | Энергия<br>реакции<br>в Мав                                                                        | Ne | Энергия<br>группы в Мэв                                                 | Реакция                                | Энергия<br>резклии<br>в Мэв                                                     |
| 1<br>2<br>3<br>4<br>5 | $\begin{array}{c} 7,08 \pm 0,10 \\ 6,08 \pm 0.10 \\ 4,75 \pm 0,20 \\ 4,10 \pm 0,20 \\ 3,48 \pm 0,20 \end{array}$ | F <sup>19</sup> (d, p) F <sup>20</sup> »  »  » | $\begin{array}{c} 4,36\pm0,20\\ 3,28\pm0,20\\ 1,84\pm0,30\\ 1,07\pm0,30\\ 0,43\pm0,30 \end{array}$ | 1<br>2<br>3<br>4<br>5                           | $7,84 \pm 0,20 7,17 \pm 0,20 6,28 \pm 0,20 4,75 \pm 0,20 3,68 \pm 0,20$ | O <sup>16</sup> (d, p) O <sup>17</sup> | $4,92 \pm 0.35$ $4,21 \pm 0.35$ $3,25 \pm 0.35$ $1,89 \pm 0.35$ $0,69 \pm 0.36$ |

С помощью более толстых фильтров не удалось найти групп с большей энергией. Можно предположить, что в случае фтора группа 1 соответствует образованию невозбужденного ядра  $F^{20}$  в реакции  $F^{19}(d, p)F^{20}$ .

До настоящего времени считалось, что масса изотопа  $F^{20}$  лежит в пределах от 20,0042 до 20,0092, т. е. неопределенность в значениях энергии реакции превышала 5 Мэв. Из полученного нами значения энергии реакции и последних данных для масс  $F^{19}$  дейтона и протона ( $^5$ ) получаем массу атома изотопа  $F^{20}$  равной 20,0064  $\pm$  0,0010. Это значение лежит в вышеуказанных пределах, а вероятная ошибка того же порядка, что и для масс других легких атомов. В случае фтора группа 2 достоверно, а группы 3—5 с большой вероятностью соответствуют образованию ядер  $F^{20}$  в различных состояниях возбуждения. Группы 3—5 нельзя с полной достоверностью относить к реак-

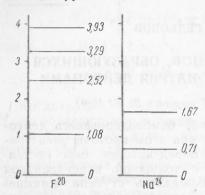



Рис. 1. Возбужденные уровни ядер F<sup>20</sup> и Na<sup>24</sup> (в Мэв)

ции F<sup>19</sup> (d, p) F<sup>20</sup> из-за большой относительной погрешности в определении их энергии. Может быть, они получаются ог реакции дейтонов с кислородом, адсорбированных мишенью, хотя при этом предположении значения энергий групп плохо согласуются с известными данными относительно реакциии O<sup>16</sup> (d,p)O<sup>17</sup>.

Нельзя считать, что наблюдаемые при бомбардировке группы протонов получаются от реакции дейтонов с кальцием, водержащимся в мишени, так как количество в ней атомов кальция вдвое меньше количества атомов фтора, а поперечное сечение кальция для реакции (d, p) весьма мало. Так например, при бомбардировке мишени из

СаСО<sub>3</sub> не наблюдалось ни одной группы протонов, принадлежащей кальцию, хотя интенсивность и длительность бомбардировки были большими, чем в случае бомбардировки мишени со слоем CaF<sub>2</sub>.

Что касается натрия, то не вызывает сомнений, что первые три группы протонов получаются в реакции  $Na^{23}$  (d, p)  $Na^{24}$ . Из значения энергии реакции, даваемого группой 1 протонов, получается для массы атома  $Na^{24}$  значение  $23,9964 \pm 0,0008$ , а общепринятое в настоящее время значение  $(^{4},^{5})$  составляет  $23,99618 \pm 0,00031$ . Таким образом, в отношении  $Na^{24}$  мы имеем для группы протонов с наибольшей энергией полное совпадение результатов нашего опыта с известными данными, что служит подтверждением и других результатов этих опытов. Группы 4 и 5 протонов от мишени с натрием получаются в реакции  $O^{16}$  (d, p)  $O^{17}$ . Приведенные значения энергии реакции хорошо согласуются с принятыми в настоящее время значениями масс изотопов кислорода  $(^{4},^{5})$ . Кроме того, при бомбардировке свежеизготовленных мишеней со слоем  $Na_2CO_3$ , содержащей кислород, они были наиболее интенсивны.

Система возбужденных уровней ядер  $F^{20}$  и  $Na^{24}$  приведена на рис. 1. Авторы считают своим приятным долгом выразить благодарность акад. П. И. Лукирскому за ценные указания и интерес к данной работе.

Поступило 2 IX 1949

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> Ю. А. Немилов и Л. И. Гедеонов, ДАН, 63, 115 (1948). <sup>2</sup> Ю. А. Немилов, ДАН, 66, 369 (1949). <sup>3</sup> М. S. Livingstone and N. A. Bethe, Rev. Mod. Phys., 9, 245 (1937). <sup>4</sup> I. Mattauch, Nuclear Physics Tables, N. Y., 1946. <sup>5</sup> Под ред. К. Гудмен, Научные и технические основы ядерной энергетики, М., 1948.