ФИЗИКА

Е. КОНДОРСКИЙ

ОДНОДОМЕННАЯ СТРУКТУРА В ФЕРРОМАГНЕТИКАХ И МАГНИТНЫЕ СВОЙСТВА МЕЛКОДИСПЕРСНЫХ ВЕЩЕСТВ

(Представлено академиком С. И. Вавиловым 4 XI 1949)

Условия, при которых изолированные участки ферромагнетиков являются однодоменными, были рассмотрены в нескольких работах (1—4), однако в оценках критических размеров подобных участков имеются значительные расхождения, зависящие от исходных предположений. В настоящем сообщении приведены результаты, полученные при вычислении распределения магнитных моментов в малых изолированных участках или частицах и дана новая оценка критических размеров однодоменных частиц.

На возможность существования однодоменных участков указали Я. И. Френкель и Я. Г. Дорфман (¹), и им принадлежит первая попытка теоретической оценки критических размеров. Порядок величины критических размеров однодоменных участков был получен также Киттелем (²), однако в его расчетах энергия граничного слоя, который возник бы при разделении участка на домены, приравнивалась энергии устойчивой границы в однородном ферромагнетике, что несправедливо. Расчет, предложенный Нейлем (³), свободен от этого недостатка, но автор получил слишком большие значения для критической величины диаметра сферического однодоменного участка благодаря тому, что в качестве возможной структуры, при которой нарушлется "однодоменность", рассматривал не наиболее выгодную энергетически. Это вытекает из сравнения полученных им результатов с расчетом Стонера и Вольфарта (⁴), рассмотревших другой вариант нарушения однородности намагничения и получивших меньшую величину для критических размеров.

Во всех цитированных работах (2-4) не рассматривались состояния, соответствующие минимумам энергии, и не определялось влияние магнитного поля на распределение намагничения внутри участка, благодаря чему не учитывалась возможность нарушения "однодоменности" в процессе перемагничивания, что весьма существенно при оценке критических размеров и величины коэрцитивной силы.

1. Распределение намагничения в малых участках эллипсоидальной и цилиндрической формы. Намагничение внутри участка будет однородным, если приращение энергии ΔW при любом нарушении однородности оказывается положительным, т. е.

$$\Delta W = \Delta W_A + \Delta W_K + \Delta W_M > 0, \tag{1}$$

где ΔW_A , ΔW_K и ΔW_M , соответственно, приращение обменной энергии, энергии от магнитной анизотропии и энергии магнитных зарядов на поверхности от нарушения однородности намагничения. Если условие (1) нарушается, намагничение становится неоднородным. Распределений вектора намагничения, соответствую-

щих при этом более или менее глубоким минимумам, может быть несколько. В случае, когда участки или частицы ферромагнитного образца имеют форму вытянутых цилиндров или эллипсоидов вращения, меньшей энергией, как можно показать, обладает распределение, при котором слагающая I_{l} вдоль большой оси остается однородной, а поперечная слагающая I_{d} вращается в плоскости, перпендикулярной большой оси. В каждой такой плоскости направление намагничения определяется углом ϑ с большой осью, которую мы совместим с осью z, и азимутом φ , который будем отсчитывать от оси x, причем величина ϑ от координат x, y и z не зависит, а угол φ изменяется только вдоль оси z от $-\varphi_0$ до $+\varphi_0$. При подобном распределении плотность части обменной энергии, зависящей от неоднородности намагничения, для кубической решетки может быть вычислена по формуле (см. $\binom{5,6}{5}$)

$$W_A = c \frac{A}{a} \left(\frac{\partial \varphi}{\partial z}\right)^2 \sin^2 \vartheta, \tag{2}$$

где A — обменный интеграл, a — межатомное расстояние по ребру куба, коэффициент c равен $^{1}/_{2}$, 1, 2, соответственно, для простой кубической решетки, решетки с центрированным кубом и центрированногранной решетки. Плотность энергии магнитных зарядов может быть представлена в следующем виде:

$$W_{M} = \frac{N_{I}I_{z}^{2}}{2} + \frac{N_{d}(\bar{I}_{x})^{2}}{2} + \frac{N_{d}I_{d}^{2}}{2}f(\varphi_{0}), \tag{3}$$

где N_t и N_d — размагничивающие факторы вдоль большой оси и по диаметру, $I_z = I_t$, \bar{I}_x — среднее значение слагающей I_x и $f(\varphi_0)$ — некоторая функция от угла φ_0 , относительно которой можно заведомо

сказать, что $f(\varphi_0) < 1$ и f(0) = 0.

В настоящей статье ограничимся рассмотрением случая, когда поле H направлено вдоль большой оси участка или частицы, представляющих эллинсоиды вращения или цилиндры. Предположим, что в том же направлении лежит и единственная ось легкого или трудного намагничения. Введем следующие упрощения: 1) неизвестную функцию $\partial \phi / \partial z$, которая может быть определена лишь после решения вариационной задачи, положим равной $\partial \phi / \partial z = \phi_0 / l$, где l- длина большой полуоси; 2) третьим членом в (3) будем пренебрегать по сравнению с двумя первыми. Тогда плотность W энергии участка или частицы в магнитном поле H можно представить в следующем виде:

$$W = \frac{N_l I_s}{2} \cos^2 \vartheta + \frac{N_d I_s^2}{2} \sin^2 \vartheta \left[A \left(\varphi_0 \right) \right]^2 + K \sin^2 \vartheta + c \frac{A}{a} \frac{\varphi_0^2}{l^2} \sin^2 \vartheta - H I_s \cos \vartheta, \tag{4}$$

где $A\left(\varphi_{0}\right)=rac{\sin^{2}\varphi_{0}}{\varphi_{0}^{2}}$ для цилиндра, $A\left(\varphi_{0}\right)=rac{3}{\varphi_{0}^{2}}\left(rac{\sin\varphi_{0}}{\varphi_{0}}-\cos\varphi_{0}
ight)$ для эллипсоида и K- константа магнитной анизотропии, которая может

быть как положительной, так и отрицательной.

Углы φ_0 и ϑ , соответствующие минимуму энергии, при заданных H и l определяются, как обычно, из условий:

$$\partial W / \partial \varphi_0 = 0, \quad \partial W / \partial \vartheta = 0.$$
 (5)

Первое из этих условий, как легко видеть, не содержит угла ϑ и позволяет вычислить значения l, соответствующие разным φ_0 . Из вто-

рого получается уравнение, определяющее кривую гистерезиса и

коэрцитивную силу при заданных l и N_l .

2. Размеры однодоменных частиц. Участок или частица будут однодоменными при всех значениях H, если $\varphi_0=0$. Подставляя в (5) $\varphi_0=0$, получим критическое значение для полудлины. Вычисление дает

$$l_{\theta} = \frac{1}{I_s} \sqrt{\frac{6cA}{N_d a}}$$
 для цилиндра, $l_0 = \frac{1}{I_s} \sqrt{\frac{5cA}{N_d a}}$, для эллипсоида. (6)

При $l>l_0$ участок уже не будет полностью однодоменным в процессе перемагничивания. Начиная с $\phi_0=\pi$ нарушение "однодоменности" можно считать полным. При $\phi_0=\pi$ вычисление дает:

$$l_\pi=\infty$$
 для цилиндра, $l_\pi=rac{\pi^3}{V\,\overline{3}}\,l_0$ для эллипсоида.

При
$$\phi_0=\pi-rac{1}{10}$$
 для цилиндра $lpprox 7l_0.$

Определение численых значений l_0 возможно, если известны величины A. Обычно оценка A производится по известным из опыта значениям температур Кюри. Л. Д. Ландау и Е. М. Лившиц (5) указали более правильный способ возможной оценки A по температурной зависимости насыщения в области низких температур. Мы будем при определении A пользоваться этим последним методом. Принимая для температурной зависимости l_s формулу Блоха (см. (7)) и пользумсь экспериментальными данными Фалло (8), получим для A значения: $A = 9.79 \cdot 10^{-14}$ эрг для железа и $A = 3.36 \cdot 10^{-14}$ эрг для никеля. Подставляя эти значения в (6) и принимая известные из опыта величины a = 2.86 Å и $l_s = 1720$ для железа и a = 3.52 Å и $l_s = 500$ для никеля, получим (учитывая, что c = 1 для железа и c = 2 для никеля) следующие значения l_0 в ангстремах (табл. 1).

Приведенные значения относятся к образцам, в которых концентрация ферромагнитной компоненты очень мала. В этом случае магнитным взаимодействием участков можно пренебречь и считать размагничивающий фактор частицы не зависящим от концентрации. Измерения (9) показывают, что средний размагничивающий фактор

Таблица 1

12 014 12 014	Сфери- ческие частицы	Элипсоиды $N_{\alpha}=2\pi$	$N_{\alpha}=2\pi$
Железо	118	96	105
Никель	302	247	270

частицы, который равен внутреннему размагничивающему фактору образца, умноженному на объемную концентрацию V ферромагнитной компоненты, весьма быстро уменьшается при увеличении этой последней. При этом оказывается, что приближенная формула $N=N_0(1-V)$, которая получается из элементарных соображений, дает неверные значения N уже при V>0.015. Средний размагничивающий фактор частиц, близких к сферической форме, при концентрации $V\approx 0.5$, по экспериментальным данным (9), равен N=0.45, т. е. понижается по сравнению с N_0 приблизительно в 10 раз. Принимая во внимание (9), отсюда следует сделать вывод, что при подобных концентрациях (9 0) значение 9 0 приблизительно в 3 раза больше указанных в табл. 1.

3. Коэрцитивная сила ферромагнетиков, состоящих из малых изолированных частиц. Из условий (5) легко получить уравнение, определяющее кривые гистерезиса и коэрцитивную силу, в следующем виде*:

^{*} Автор настоящей работы указывал ранее (10) на возможность зависимости коэрцитивной силы от формы частиц в материалах, где перемагничивание происхо-

$$H = -I_s \cos \vartheta \left[B(\varphi_0) N_d - N_t + \frac{2K}{f_s^2} \right], \tag{7}$$

где $B\left(\phi_{0}\right)=rac{\sin\phi_{0}}{\phi_{0}}\left(rac{2\sin\phi_{0}}{\phi_{0}}-\cos\phi_{0}
ight)$ для цилиндра;

$$B(\varphi_0) = \frac{18}{\varphi_0^4} \left(\varphi_0 \sin \varphi_0 \cos \varphi_0 - 1 + \frac{9}{2} \cos^2 \varphi_0 - 7 \frac{\sin \varphi_0 \cos \varphi_0}{\varphi_0} + \frac{7}{2} \frac{\sin^2 \varphi_0}{\varphi_0^2} \right)$$

для эллипсоида. Из (7) следует

$$H_c = I_s \left[B(\varphi_0) N_d - N_t + \frac{2K}{I_s^2} \right], \quad B(\varphi_0) > \frac{N_t - 2K/I_s^2}{N_d}$$
 (8)

при $\varphi_0 = 0$, B(0) = 1 и

$$H_c = H_{c \text{ max}} = I_s \left(N_d - N_t + \frac{2K}{I_s^2} \right).$$
 (9)

Когда $\varphi_0\!>\!0$, т. е. $l\!>\!l_0$, $H_c\!<\!H_{c\,\max}$. Таким образом, значением

 $H_{c\, ext{max}}$ обладают только полностью однодоменные частицы.

Из (7) следует далее, что при $l>l_0$ однородность намагничения нарушается, когда поле достигает значения $H=-H_c$. При $|H|< H_c$ рассматриваемые частицы являются квазноднодоменными, т. е. не могут быть размагничены.

Величина коэрцитивной силы в основном определяется анизотро-

пией формы, если

$$B(\varphi_0) N_d - N_l > \frac{2K}{I_c^2}.$$
 (10)

Левая часть (10) зависит от концентрации ферромагнитной компоненты. Как уже было сказано, при $V \leqslant 0{,}015$ значения $N \approx N_0$. При объемной концентрации $V \approx 0{,}5$, как уже было сказано, значения N снижаются приблизительно в 10 раз. Если допустить, что $N_d - N_t$ понижается приблизительно пропорционально N, то для железа при $l \leqslant l_0$ условие (10) окажется выполненным, если l/d > 2. Для коэрцитивной силы, вызванной анизотропией формы беспорядочно распределенных частиц, Стонер и Вольфарт (4) получили формулу: $H_c = 0{,}479 \, (N_d - N_t) \, I_s$. При максимальном для $V \approx 0{,}5$ значении $N_d \approx 2\pi/10$ из этой формулы получается для железа $H_c \approx 530$ эрст. Длина участков или частиц при этом, согласно (6), должна быть $l \leqslant l_0 \approx 300 \, \text{Å}$.

Научно-исследовательский институт физики Московского государственного университета им. М. В. Ломоносова Поступило 1 XI 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Я. И. Френкель и Я. Г. Дорфман, Nature, 126, 274 (1930). ² С. Кіttel, Phys. Rev., 70, 965 (1946). ³ L. Néel, C. R., 224, 1488, 1550 (1947). ⁴ E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc. London, 240, 599 (1948). ⁵ Л. Д. Ландау и Е. М. Лившиц, Phys. Zs. Sowjetunion, 8, 153 (1935). ⁶ С. В. Вонсовский и Я. С. Шур, Ферромагнетизм, М.—Л., 1948. ⁷ Г. Бете и А. Зоммерфельд, Электронная теория металлов, М.—Л., 1938. ⁸ М. Fallot, Ann. de. Phys., 6, 305 (1936). ⁹ Г. Н. Петрова, Изв. АН СССР, сер. геогр. и геофиз., 12, №№ 5 и 6 (1948). ¹⁰ Е. Кондорский, ЖЭТФ, 10, 420 (1940); Journ. Phys., 2, 161 (1940).

дит только в результате вращения, и получил теоретические формулы, содержащие разность размагничивающих факторов $N_I - N_d$ и константу магнитной анизотропии. Позднее Стонер и Вольфарт (4) вывели соответствующие формулы для общего случая с произвольной ориентацией осей эллипсоидальной частицы по отношению к полю.