БОТАНИКА

Член-корреспондент АН СССР Г. А. ТИХОВ

СПЕКТР САМОИЗЛУЧЕНИЯ (ФЛУОРЕСЦЕНЦИИ) РАСТЕНИЙ В КРАСНЫХ И ИНФРАКРАСНЫХ ЛУЧАХ

В моих статьях (¹) воспроизведены снимки зелени и цветов растений, полученные в их собственном излучении красных и инфракрасных лучей. Следующим шагом в изучении этого явления было получение спектра флуоресценции растений. Для этого, как и в 1948 г., растение закрывалось флуоресцентным ящиком, описанным в указанных статьях. Напомню вкратце его устройство. Это — деревянный ящик без дна, но с глухой крышкой. Одна из стенок ящика сделана наклонной, и в нее вставлен наливной фильтр с водным раствором медного купороса такой концентрации, чтобы он полностью поглощал крайние красные и инфракрасные лучи.

В крышку ящика герметически вставлен коллиматор светосильного спектрографа, заряженного пластинкой, чувствительной к красным и инфракрасным лучам. Изучаемое растение накрывается ящиком, который ориентируется так, чтобы наливной фильтр был обращен к солнцу. Таким образом, растение облучается более коротковолновыми лучами солнца, но совершенно не получает лучей красных и инфракрасных. Следовательно, растение может дать спектр в красных и инфракрасных. Следовательно, растение может дать спектр в красных и инфракрасных лучах только за счет самоизлучения. Для контроля в тех же условиях фотографируется спектр гипсовой пластинки. Для этих снимков применяется широкая щель и выдержка в несколько секунд для гипса и в несколько минут для растения.

До или после этих снимков наливной фильтр убирают, щель сужают и снимают спектры гипсовой пластинки и исследуемого растения со сравнительно малыми выдержками. Эти спектры гипса служат для фотометрической обработки как спектра флуоресценции, так и спектров отражения растения. На рис. 1 представлен увеличенный позитивный отпечаток с одного из негативов. Спектры 1, 2, 3 относятся к гипсу при полном солнечном освещении; спектры $10, 11, 12 - \kappa$ канадской ели при полном солнечном освещении. Спектры 4 - 9 сняты при вставленном наливном фильтре, причем спектры 4, 5 и 6 относятся к гипсу, а спектры 7, 8 и $9 - \kappa$ канадской ели. Ширина щели для спектров 1 - 3 и 10 - 12 равнялась 0,06 мм, а для спектров 4 - 9 0,10 мм.

При больших выдержках синие и фиолетовые лучи (левая сторона спектров на рисунке) выходят сильно передержанными и дают большие ореолы, замывающие красные и инфракрасные лучи. Для избежания этого при фотографировании всего негатива перед шелью помещается светофильтр, очень слабо окрашенный аурамином. Эта краска сильно ослабляет лучи синие и фиолетовые, но немного пропускает область кальциевых линий солнечного спектра H и K, что весьма полезно, так как дает опору для определения длины волны флуоресценции. Спектры 1-3 и 10-12 доходят (справа) до крайних красных лучей ($\lambda = 760$ мµ). На спектрах гипса 4-6 эти лучи полностью отсутствуют, чего и надо было ожидать, так как они совершенно поглощены наливным фильтром. В спектрах же ели 7-9, снятых также через наливной фильтр, видна светлая полоса в крайних красных лучах. Это и есть полоса самоизлучения ели. Для характеристики самоизлучения надо найти длину волны его полос и выразить их энергию по отношению к энергии какого-нибудь определенного участка солнечного спектра.

Определение длины волны полос самоизлучения

Применявшийся нами спектрограф имеет очень небольшую дисперсию: длина спектра на фотопластинке между ливнями K (393,4 мµ) и A (759,4 мµ) равна всего 5,80 мм. Благодаря присутствию на спектрах самоизлучения (7—9 на рис. 1) линий K и H (396,8 мµ) можно войти в дисперсионную кривую и снять длину волны полос самоизлучения. Следующим шагом в наших работах был переход к спектрографу с дисперсией в 3 раза большей, и первые опыты с ним показали, что хорошие спектры можно получить в несколько минут, не подвергая, таким образом, растение опасности задохнуться во флуоресцентном ящике. К тому же в ящике имеется вентиляционная труба, не пропускающая света.

Определение энергетической отдачи полос самоизлучения

За эталон сравнения я выбрал энергию солнечного света, облучающего растение, т. е. энергию солнечного света после его прохождения через наливной фильтр. Следовательно, наша задача сводится к нахождению отношения энергии самоизлучения к энергии солнечного света, прошедшего через наливной медно-купоросный светофильтр.

Вернемся еще раз к рис. 1. Пользуясь спектрами 1-3 как фотометрической шкалой, мы можем найти в единицах этой шкалы энергетический поток e_{λ} полос самоизлучения спектров 7-9, учтя, конечно, различие выдержек и различие в ширине щели. Если мы обозначим энергетический поток для спектров 1-3, полученных после рассеяния солнечного света гипсом, через \mathcal{C}_{λ} , а после полного рассеяния, например, баритом, через \mathcal{C}_{λ} , то имеем приближенно

$$\mathscr{E}_{\lambda} = 0,90 \, \mathscr{E}_{\lambda}. \tag{1}$$

Измеряя полосы самоизлучения спектров 7—9 по шкале спектров 1—3, находим

$$\frac{e_{\lambda}}{\mathcal{E}_{\lambda}} = 0.90 \left(\frac{e_{\lambda}}{\mathcal{E}_{\lambda}'} \right), \tag{2}$$

где $e_{\lambda}/\mathscr{E}_{\lambda}$ есть энергетический поток самоизлучения в единице энергетического потока солнечного света в длине волны λ . Энергетический поток E от всей полосы самоизлучения, заключенной в пределах длин волны λ_1 и λ_2 , имеет выражение

$$E = 0.90 \int_{\lambda_1}^{\lambda_2} \left(\frac{e_{\lambda}}{\mathfrak{G}_{\lambda}'} \right) \mathfrak{G}_{\lambda} d\lambda.$$
(3)

Далее, энергетический поток Э солнечного света, прошедшего через наливной купоросный фильтр, имеет выражение

$$\partial = \int_{\lambda_1}^{\lambda_4} p_{\lambda} \mathcal{O}_{\lambda} d\lambda, \qquad (4)$$

где p_{λ} есть коэффициент прозрачности наливного фильтра в длине волны λ , а λ_3 и λ_4 — пределы пропускаемости этого фильтра. Энергетическая отдача самоизлучения η представляется отношением E/∂ . 110 Если в промежутке от λ_1 до λ_2 отношение $(e_{\lambda}/\mathcal{E}'_{\lambda})$ можно считать постоянным, то

$$\eta = -\frac{0,90 \left(\frac{e_{\lambda}}{\mathscr{E}_{\lambda}'}\right) \int_{\lambda_{1}}^{\lambda_{2}} \mathscr{E}_{\lambda} d\lambda}{\int_{\lambda_{2}}^{\lambda_{4}} p_{\lambda} \mathscr{E}_{\lambda} d\lambda}, \qquad (5)$$

или, при замене интегрирования механической квадратурой,

$$\eta = \frac{0,90 \left(\frac{e_{\lambda}}{\mathcal{E}_{\lambda}'}\right) \sum_{\lambda_{1}}^{\lambda_{2}} \mathcal{E}_{\lambda}}{\sum_{\lambda_{3}}^{\lambda_{4}} p_{\lambda} \mathcal{E}_{\lambda}}.$$

Выражения (5) или приблизительно (6) и представляют решение нашей задачи. Заметим, что \mathcal{C}_{λ} в числителе и знаменателе могут быть выражены в произвольных единицах, так как нам требуется только их отношение.

Значения \mathcal{C}_{λ} взяты мною из смитсонианских физических таблиц (Smithsonian Physical Tables) для атмосферной массы 1,5 на горе

Таблица 1

(6)

λ Μίτ	έλ	Pλ	p 2 82	у мџ	Ĉλ
λ M/2 370 375 385 395 405 415 425 435 445 445 455 465 475 485 495 505 515 525 535 545 555 565 575 585 595 605	\mathcal{E}_{λ} 166 174 189 209 234 266 307 349 390 416 427 435 436 435 436 437 436 435 436 437 436 435 434 432 431 429 426 423 420 416 412	P_{λ} 0,000 ,250 ,445 ,515 ,552 ,572 ,580 ,522 ,520 ,520 ,520 ,520 ,520 ,520 ,520 ,520 ,520 ,520 ,520 ,520 ,520 ,220 ,125 ,220 ,125 ,220	$p_{\lambda} & \mathcal{E}_{\lambda}$ 44 84 108 129 152 178 202 226 241 248 252 251 245 232 218 200 181 161 139 113 93 71 52 25 25 25 25 25 25 2	λ Μμ 675 685 695 705 715 725 735 745 755 765 775 785 795 805 815 825 835 845 855 865 855 865 875 800 890 900 910	\mathcal{E}_{λ} 372 365 357 350 341 334 326 318 310 303 296 288 281 274 266 260 254 248 242 236 232 230 225 220 216
615 625 635	407 402 206	,058,035	24 14	920 930	210 212 207
645 655	390 390 385	,020 ,012 ,005	8 5 2	940 950 960	203 198 194
671 672	378 374 373	,002 ,C01 ,000	0	970 980 990	190 186 182 179

 $\Sigma P_{\lambda} \mathcal{E}_{\lambda} = 3909$

Таолица 2

183			5 (2) man	Ширина щели в мм		Выдержка	
М негат	Растение	Дата	Сорт пластинки	ДЛЯ ШКАЛЫ	для pacr.	для шкалы	для раст.
23	Люцерна (листья) .	1949 г.	НИКФИ панин-	0,060),10	0,8 сек.	2,4 и 8 мин
24	То же	То же	фрахром тип п инфрахром, чув- ствит, 40	0,060),40	3,2	6и12»
27	Шалфей (листья) .	1949 г. авг. 23	панинфрахром, тип II	0,060	,10	0,8	1, 2 и 4 »
35	Ель канадская	сент. 1	То же	0,060	,10	0,8	4,6 и 8 »

№ нега- тииа	Полоса самосвечення	λ1 Μμ	y ^a wit	Средняя λмµ	$0,90\left(\frac{e_{\lambda}}{\mathscr{E}_{\lambda}'}\right)$	$\sum_{\lambda_1}^{\lambda_1} \mathcal{E}_{\lambda}$	$\sum_{\lambda_1}^{\lambda_2} \mathscr{E}_{\lambda} : \sum_{\lambda_2}^{\lambda_4} p_{\lambda} \mathscr{E}_{\lambda}$	7)
23	1-я	680	692	686	0,00043	436	0.111	0,00005
	Средняя.	692	715	704	,00046	806	,206	,00009
pdd	2-я	715	762	738	,00147	1519	,388	,00057
24	1-9	734	774	754	0,00160	1245	0,318	0,00051
	2-я	797	830	814	,00035	883	,226	,00008
27]-я	676	690	683	0,00050	513	0,131	0,00006
	Средняя	690	716	703	,00068	911	,233	,00016
	2-я	716	752	734	,00159	1176	,301	,00048
35	1-я	670	728	699	0,00057	2052	0,525	0.00030
	2-я	728	754	741	,00096	835	,214	,00021

Вильсон (высота 1675 м), что соответствует 1,35 атмосферной массы на обсерватории в Алма-Ата (высота 850 м) или зенитному расстоянию солнца 42°, при каковом обычно производились наблюдения.

В табл. 1 приведены соответствующие значения солнечной энергии в произвольных единицах, через 10 м μ или чаще, для алма-атинской массы 1,35 и рядом — значения p_{λ} по нашим определениям, а также произведения $p_{\lambda} \mathcal{O}_{\lambda}$.

Сумма $\sum_{\lambda_{a}} p_{\lambda} \mathscr{E}_{\lambda}$ одинакова для всех исследованных нами негативов.

Что касается числителя формулы (6), то он различен для разных растений.

Мною измерены и обработаны 4 негатива, снятых К. А. Севриным по такой же программе, как его же негатив № 35 (рис. 1). В табл. 2 и 3 собраны основные данные, относящиеся к изученным негативам.

Как видно из табл. 3, средняя полоса на негативах 23 и 27 представляет непрерывный переход от полосы 1-й ко 2-й. (Видимое на негативе разделение на 2 полосы происходит оттого, что между ними лежит минимум чувствительности пластинки). Во всяком случае, при малой дисперсии применявшегося спектрографа все три полосы сливаются в одну широкую.

При выполнении настоящей работы, кроме К. А. Севрина, снявшего негативы, помощь съемкой вспомогательных негативов и их обработкой оказали мне К. И. Козлова, Н. И. Кучеров и К. Т. Стоянова. Увеличенный отпечаток негатива сделал М. К. Джунусов.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

³ Г. А. Тихов, ДАН, 62, № 5 (1948); Вестн. АН Каз. ССР, № 11 (44) (1948). 112