ХИМИЯ

А. Ф. ЛУКОВНИКОВ, В. П. МЕДВЕДЕВ, М. Б. НЕЙМАН, Ан. Н. НЕСМЕЯНОВ и И. С. ШАВЕРДИНА

ИЗОТОПНЫЙ ОБМЕН ФОСФОРА МЕЖДУ ФОСФАТ-ИОНОМ И ЭФИРАМИ ФОСФОРНОЙ КИСЛОТЫ

(Представлено академиком А. Н. Несмеяновым 17 Х 1949)

Изучение реакций изотопного обмена фосфора между фосфат-ионом и эфирами фосфорной кислоты представляет интерес, так как оно может дать материал для оценки подвижности О — R-связей в эфире. Кроме того, изучение обмена важно для понимания процесса усвоения фосфатов, из которых в организме животных образуется гексозофосфат и другие эфиры.

С целью выяснения возможности обмена фосфора между фосфатионом и эфирами фосфорной кислоты рядом исследователей были изучены системы: гексозомонофосфат — фосфат (1), глицерофосфат — фосфат (2), нуклеиновые кислоты — фосфат (3), табачный мозаик-ви-

рус — фосфорная кислота (4) и др.

Опыты этих исследователей, проведенные при температурах до 100°, в пределах погрешности экспериментов показали отсутствие обмена

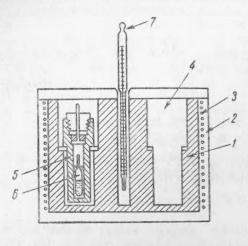
фосфора.

Используя радиоактивный фосфор P^{32} в качестве индикатора, мы исследовали системы: трикрезилфосфат — фосфорная кислота, трибутилфосфат — динатрийфосфат, тригексилфосфат — динатрийфосфат и триэтилфосфат — динатрийфосфат в абсолютном диоксане.

Первая система была гомогенна, а в следующих натриевая соль в растворе присутствовала в количестве, не превышающем 0,1 г/л, основная же масса тончайшим слоем оседала на стенках реакционного сосуда.

Радиофосфор приготовлялся по методике, описанной в нашей обзорной статье (5), и во всех случаях вводился в фосфат-ион. В отличие от предыдущих исследователей, мы проводили опыты в интервале темпера-

тур от 100 до 300° по ранее описанной методике (6, 7).


Эквивалентные по фосфору смеси, с содержанием фосфата в каждом компоненте 0,02—0,03 г, запаивались в кварцевые ампулы и помещались в стальные герметически закрывающиеся бомбы. Внутрь бомб заливалось небольшое количество воды, давление паров которой уравновешивало внутреннее давление в ампулах, когда последние нагревались в электропечи, схематически изображенной на рис. 1.

Нагревание производилось в течение 20—30 час., после чего ампулы вынимались, вскрывались и из содержащегося в них раствора выделя-

лись органический и неорганический фосфаты.

Для разделения системы трикрезилфосфат — фосфорная кислота диоксан из смеси частично отгонялся и смесь взбалтывалась с 10 мл эфира и 10 мл воды. После отделения водного слоя экстрагирование

эфирной вытяжки водой повторялось еще 3 раза. Все водные вытяжки собирались вместе и из них ион PO₄ осаждался магнезиальной смесью. Серный эфир отгонялся и к остатку приливался насыщенный спиртовый раствор щелочи.

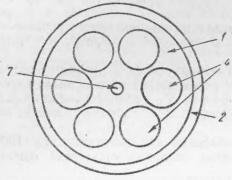


Рис. 1. Металлическая электропечь на 6 гнезд для нагревания бомб с ампулами. 1— алюминиевый блок, 2— теплоизоляция, 3— электрическая обмотка, 4— гнезда для бомб, 5— стальная бомба, 6— ампула с исследуемым раствором, 7— термопара или контактный термометр

При нагревании трикрезилфосфат гидролизовался, крезол отгонялся, а из раствора, подкисленного соляной кислотой, производилось осаждение иона PO₄"" магнезиальной смесью.

Для отделения других применявшихся нами эфиров от натриевой соли фосфорной кислоты оказалось достаточным отфильтровать раствор от осадка натриевой соли. При этом в раствор, содержащий эфир, попадала незначительная доля РО₄", которая учитывалась. Раствор упаривался почти досуха, добавлялась соляная кислота и смесь кипятилась с обратным холодильником. Из продуктов гидролиза ион РО₄" осаждался магнезиальной смесью.

Полнота разделения фосфатиона и эфиров была проверена весовым путем для каждой пары исследованных соединений в отдельности. Опытами было установлено, что ошибка разделения только в редких случаях достигает 3%.

Помимо этого, чтобы удостовериться в полноте отделения радиоактивных соединений, была проведена проверка разделения каждой пары соединений радиометрическим путем. Из многих опытов мы приводим в табл. 1 отдельные примеры. Опыты 1, 2,

3 относятся к системе трикрезилфосфат — фосфорная кислота опыты 4, 5 — к системе триэтилфосфат — динатрийфосфат.

Таблица 1 Радиометрический контроль полноты разделения фосфат-иона и эфира

Ng Ng On M Tob	Количество Н _в РО ₄ или Na ₂ HPO ₄	Количество әфира	Активность в имп/мин.			
			H ₈ PO ₄ , Na ₂ HPO ₄	эфир	свидетел	
1	0,0671	0,2519	202	8	203	
2	0,0671	0,2519	198	9	203	
3	0,0671	0,2519	190	9	192	
4	0,0250	0,1064	_	4	935	
5	0,0250	0,1064	-	8	935	

Как показывает табл. 1, выбранный метод разделения смесей в пределах погрешности измерения является удовлетворительным.

Результаты исследования реакции изотопного обмена фосфора между

РО4" и эфирами фосфорной кислоты приведены в табл. 2.

Из табл. 2 видно, что во всех изученных нами случаях обмен в пре-

делах погрешности опыта не имеет места.

На основании проделанной работы мы можем сделать заключение о прочности связей О — R, которые оказываются устойчивыми до температуры 290°, когда эфиры фосфорной кислоты начинают разлагаться.

Таблица 2

Обмен фосфора в системе $PO_4^{\prime\prime\prime}$ — $(RO)_3PO$ в абсолютном диоксане (количество фосфора в каждом случае 0.02-0.03 г, объем раствора 5 мл)

Ж п. п.		Время соприкос- новения в час.	Т-рав С	Актизность в имп/мин.		
	Система			PO,""	(RO) _a PO	свидетель
1	$H_3 \check{P}O_4 - (CH_3C_6H_4O)_3PO$.	20 24 24 24 24	100 150 200 250	436±56 427±55 423±55 294±41	14 ± 22 15 ± 22 18 ± 22 13 ± 17	474±22 474±22 474±22 335±19
2	$Na_2HPO_4 - (i-C_4H_9O)_3PO$.	31,5 31,5	280 280 280	294 + 41	13 ± 17 12 ± 12 8 ± 12	1870 + 116 $1870 + 116$
3	$Na_2HPO_4 - (n-C_4H_9O)_3PO$.	31,5	280 280	=	6±11 9+12	1870±116
4	$Na_2HPO_4 - (C_6H_{13}O)_3PO$	31,5 31,5	280 280	=	$13 \pm 12 \\ 8 \pm 12$	1870-116 1870+116
5	$Na_2HPO_4 - (C_2H_5O)_3PO$	32	280	-	10±11	187 0 ±116

Московский государственный университет им. М. В. Ломоносова и Горьковский государственный университет

Поступило 14 **X** 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Hevesy and A. H. W. Aten, Kgl. Danske Viedenskab. Selskab. Biol. Medd., 14, 5 (1939). ² C. Perrier et E. Segré, Ric. Sci., 9, 628 (1939). ³ L. Hahn and G. Hevesy, Nature, 145, 549 (1940). ⁴ H. J. Born, A. Lang, G. Schramm u. K. G. Zimmer, Naturwiss., 29, 222 (1941). ⁵ Б. Г. Дзантиев и М. Б. Нейман, Усп. физ. наук, 38, 338 (1949). ⁶ К. Б. Заборенко, М. Б. Нейман и В. Н. Самсонова, ДАН, 64, 541 (1949). ⁷ В. Д. Ионин, А. Ф. Луковников, М. Б. Нейман и Ан. Н. Несмеянов, ДАН, 67, 46 (1949).