БИОХИМИЯ

Г. Я. ВИЛЕНКИНА

О МЕХАНИЗМЕ РАСЩЕПЛЕНИЯ В-ОКСИАМИНОКИСЛОТ ГЛИЦИНОГЕНАЗОЙ

(Представлено академиком А. И. Опариным 16 IX 1949)

В предшествующей работе А. Е. Браунштейн и автор (1) сообщили об открытии в тканях печени и почек различных животных энзима, расщепляющего серин, треонин и другие β-оксиаминокислоты с образованием глицина и названного глициногеназой.

В работе (¹) было установлено, что распад β-оксиаминокислот протекает с одинаковой интенсивностью в аэробных и анаэробных условиях. Это обстоятельство противоречит гипотезе Кноопа, согласно которой оксиаминокислоты подвергаются β-окислению с образованием глицина и жирных кислот с укороченной на 2 атома углеродной цепью. К гипотезе Кноопа склоняются и другие авторы, например Шимин (²), приводящий в качестве возможного пути превращения серина в глицин в организме животных реакцию по уравнению

$$CH_2OH \cdot CH(NH_2) \cdot COOH + O = H \cdot COOH + NH_2CH_2 \cdot COOH.$$
 (1)

Помимо анаэробного характера действия глициногеназы, с данной гипотезой не согласуется также факт отщепления глицина от β-оксивалина, у которого гидроксил расположен у третичного углеродного атома, что исключает возможность β-окисления по схеме Кноопа.

В целях выяснения характера реакции, катализируемой глициногеназой, мы предприняли исследование природы второго продукта, обра-

зующегося из оксиаминокислот под влиянием этого энзима.

В постановке опытов мы исходили из предположения А. Е. Браунштейна о том, что действие глициногеназы протекает по типу реакции альдольного разуплотнения и, следовательно, из β-оксиаминокислот наряду с глицином образуются соответствующие альдегиды или кетоны по схеме:

$$R^1$$
 $C-CH-COOH \rightarrow R^1-CO-R^2+NH_2\cdot CH_2\cdot COOH$ (2)
 R^2 OH NH_2 ($R^1=H$ или CH_3 ; $R^2=H$, CH_3 , C_2H_5 , C_6H_5 и т. д.)

Полученные нами экспериментальные данные подтвердили это

предположение.

В первую очередь мы исследовали действие глициногеназы на β-оксивалин, из которого по схеме (2) должен образоваться ацетон. При этом мы руководствовались тем, что ацетон значительно труднее альдегидов подвергается дальнейшим превращениям в ткани печени и рассматривается обычно как конечный продукт обмена (см., одна-

385

ко, (3)). В качестве фермента был использован гомогенат печени моркой свинки.

Как показано в табл. 1, при действии гомогената печени на β-оксивалин образуется ацетон в количестве, составляющем 80—91% от эквивалента отщепленного глицина. Ацетон был идентифицирован и определен количественно посредством специфической цветной реакции с салициловым альдегидом по методу Бере (4)).

Продукты расщепления β-оксиаминокислот глициногеназой печени морской свинки. (Условия опытов—см. в тексте и в сообщении (1) Все величины выражены в микромолях на 1 г исходного веса ткани печени)

Субстраты							
оксивалин треонин						фенилсерин	
	Пр	одук	ты ре	а ц	и и		
адетон			глицин уксусный аль- дегид			бен- зальде- гид	глицин
опыт	пр я- рост	при- р ост	контроль без суб- страта	опыт	при- ро с т	опыт	при- рост
6,0	3,4	3,9	пено, что впостью в	CTARDU	OKINO Bonos	(⁴) stoos c ognis	B d
7,5	5,9	7,3	0	11,0	29,1	+++	9,6
8,6	6,0	6,6	0	7,0	30,6	+++	14,0
	детон опыт 6,0 7,5	Пр пря- рост 6,0 3,4 7,5 5,9	оксивалин Продук детон пря- рост при- рост 6,0 3,4 3,9 7,5 5,9 7,3	оксивалин Продукты ре детон пря- рост пря- рост при- рост 6,0 3,4 3,9 7,5 5,9 7,3 0	оксивалин треонин Продукты реа ц детон глицин уксусный альдегид пря- при- рост без субстрата 6,0 3,4 3,9 7,5 5,9 7,3 0 11,0	оксивалин треонин Продукты реа ции детон глицин уксусный альдегид опыт прирост прирост без субстрата опыт прирост 6,0 3,4 3,9 7,5 5,9 7,3 0 11,0 29,1	оксивалин треонин фенил Продукты реации продукты реации пи и цетон глицин уксусный альдегий глицин бензальдегий опыт прирост рост рост страта опыт прирост опыт рост опыт прирост рост опыт 6,0 3,4 3,9 3,9 3,9 3,9 3,1 3,9 3,0 <td< td=""></td<>

Более трудную задачу представляло обнаружение и определение альдегидов, образующихся при действии глициногеназы на другие β-оксиаминокислоты. Большая реактивность альдегидов, легко доступных вторичным превращениям, как энзиматическим (дисмутация, окисление), так и спонтанным (окисление, реакции конденсации), не позволяет определить их в присутствии ткани с количественным выходом, даже при использовании приемов, направленных на удаление альдегидов из сферы реакции. От мысли "фиксировать" альдегид путем добавления к энзиматическим пробам реагентов, связывающих СО-группы, пришлось отказаться ввиду токсического действия этих реагентов на глициногеназу (см. ниже). Учитывая общеизвестную трудность открытия формальдегида в присутствии белковых веществ, с которыми он энергично конденсируется, мы воздержались пока от попыток обнаружить его при расщеплении серина.

Уксусный альдегид, добавленный к белковым растворам, также определяется с большими потерями вследствие реакции конденсации и окислительно-восстановительных превращений (ср. (5)). Нам удалось показать образование уксусного альдегида при действии глициногеназы на треонин (и аллотреонин) следующим путем. Во время инкубирования через контрольные и опытные смеси пропускался непрерывный ток азота (или воздуха), увлекавший уксусный альдегид по мере его образования; газ проходил затем через барботер с охлажденным 1% раствором бисульфита. По окончании опыта поглощенный в бисульфите ацетальдегид определялся фотометрически посредством реакции с р-оксидифенилом (5). Выход уксусного альдегида в опытах с гомогенатом печени морской свинки соответствовал 25-37% по от-

ношению к приросту глицина (табл. 1).

Для идентификации уксусного альдегида был поставлен аналогичный опыт в более крупном масштабе с аллотреонином и гомогенизированной суспензией из 5 г печени морской свинки. Раствор бисульфита с поглощенным альдегидом был разложен кипячением с углекислым кальцием в колбе с пришлифованным холодильником; отгоняемый альдегид улавливался в охлажденный раствор 2,4-динитрофенилгидразина (0,6%) в 2N HCI. Выпавший желтый осадок собран на следующий день и перекристаллизован из спирта. Выход 2,4-динитрофенилгидразона ацетальдегида 12,2 мг, или 50 μ M, что соответствует 10 μ M альдегида на 1 г ткани (около 30% от образующегося глицина). Т. пл. гидразона $158-159^\circ$ (некорр.). Ту же точку плавления дал 2,4-дифенилгидразон, полученный нами из достоверного ацетальдегида (по Мейеру (7), т. пл. 162°). Смесь достоверного и полученного из опытной пробы гидразонов плавилась при $157-158^\circ$.

Наконец, нами установлено образование глицина и бензойного альдегида при действии глициногеназы на β -фенил-DL-серин*. Энзим образует глицин из фенилсерина с большей скоростью, чем из серина, но медленнее, чем из треонина. Бензальдегид был обнаружен по резкому запаху горького миндаля, который появлялся в суспензиях гомогената печени при инкубировании с фенилсерином. Идентифициро-

ван он был микрохимически в виде р-нитрофенилгидразона.

Инкубирование при 37° производилось в диффузионных приборчиках Конвея с раствором p-нитрофенилгидразона (в разбавленной H_2SO_4) в центральном резервуаре. На поверхности этого раствора образовались коричневато-желтые кристаллы, имеющие под микроскопом характерный вид перистых (папоротникообразных) агрегатов из уплощенных изогнутых игл, совпадающих по форме с достоверным p-нитрофенилгидразоном бензальдегида, полученным в тех же условиях.

В предварительных опытах по изучению влияния различных химических агентов на активность глициногеназы мы обнаружили интенсивное торможение при добавлении реактивов, блокирующих СО-группы. Бисульфит ($5 \cdot 10^{-3} \, M$), семикарбазид и гидроксиламин в концентрациях $10^{-3} \, M$ полностью задерживают действие глициногеназы, что указывает на наличие карбонильной группировки в активной группе энзима.

Этим признаком, как известно, характеризуется ряд энзимов, простетической составляющей которых служит фосфопиридоксаль (8). Ввиду этого, нами была испытана активность глициногеназы в печени крыс с резко выраженными признаками B_6 -авитаминоза, содержавшихся 2,5 мес. на синтетическом рационе без витамина B_6 (8). Опыты показали, что гомогенаты печени нормальных и B_6 -авитаминозных крыс расщепляют β -оксиаминокислоты с одинаковой интенсивностью. Таким образом, мы не получили данных, которые говорили бы в пользу того, что глициногеназа принадлежит к энзимам с пиридоксалевой простетической группой.

Выводы

1. Расщепление β -оксиаминокислот глициногеназой носит характер реакции альдольного разуплотнения. Наряду с глицином из β -оксивалина образуется ацетон, из треонина и аллотреонина — уксусный альдегид, из β -фенилсерина — бензойный альдегид.

2. Реагенты на карбонильную группу (бисульфит, семикарбазид,

гидроксиламин) резко тормозят действие глициногеназы.

3. Экспериментальный В₆-авитаминоз не сопровождается снижением активности глициногеназы в печени крысы.

^{*} Препарат фенилсерина любезно предоставлен нам проф. М. М. Ботвинник.

Приношу глубокую благодарность дейсгвительному члену Академии медицинских наук СССР А. Е. Браунштейну за руководство работой.

Институт биологической и медицинской химии Академии медицинских наук СССР

Поступило 30 VIII 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Е. Браунштейн и Г. Я. Виленкина, ДАН, 66, 243 (1949).

² D. Shemin, Journ. biol. Chem., 139, 25 (1940).

³ E. Borek and D. Rittenberg, Journ. biol. Chem., 179, 843 (1949).

⁴ J. A. Behre, Journ. biol. Chem., 136, 14 (1940).

⁵ E. Stotz, Journ. biol. Chem., 148, 585 (1943).

⁶ A. E. Браунштейн и С. М. Бычков, Биохимия, 8, 234 (1943).

⁷ Г. Мейер, Анализ и определение органических соединений, Л., 1937.

⁸ А. Е. Браунштейн и Е. В. Горяченкова, Биохимия, 14, 163 (1949); А. Е. Браунштейн, ДАН, 65, 715 (1949).

ы возвадае (жиненоосканофорка) химонфар дос выну тирусх нов иниформация доступности от скиносканом доступности история

ment appropriate for the second part of the second

режений альности салучностий, Нариду с глениеся из р-одиннайна образутся вистом, из треоном в алютроневи—уисусный завляется, на режености по почения спратом в Режения на эт совершения (басумения, се сквобавия, си сережными режено об собит действий глиприченнями.