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Abstract. We present a recipe for constructing the efficient contour which al-

lows one to calculate with high accuracy the Mellin-Barnes integrals, in partic-

ular, for the F3 structure function written in terms of its Mellin moments. We

have demonstrated that the contour of the stationary phase arising for the F3

structure function tends to the finite limit as Re(z) → −∞. We show that the

Q2 evolution of the structure function can be represented as an integral over the

contour of the stationary phase within the framework of the Picard-Lefschetz

theory. The universality of the asymptotic contour of the stationary phase de-

fined at some fixed value of the momentum transfer square Q2
0 for calculations

with any Q2 is shown.

1 Introduction

The Mellin–Barnes (MB) integrals are widely used in high-energy physics. Their efficient

numerical evaluation is an important task. The problem of finding efficient approximations

of the stationary phase integration contours for the MB integrals was formulated in [1–3].

Recently, a list of studies performed using the MB integrals was supplemented by the prob-

lem of determining the structure functions and parton distributions in QCD analysis of the

deep inelastic scattering (DIS) data. Significant progress in high-precision calculations of

the MB integrals was achieved in the case of finite asymptotic behavior of the contour of the

stationary phase at infinity [3]. The inverse Mellin transform to calculate structure functions

in the Bjorken xB-space, which can be considered as a typical one-dimensional integral MB,

corresponds to this case. The first attempt to construct an effective approximation for the

integration contour using the expansion of the integrand at the saddle point was made in [4]

as applied to the calculation of parton distributions.

Here we present the basics of constructing the asymptotic contour of the stationary phase

which allows one to calculate efficiently the MB integrals in the case of the finite asymptotic

behavior of the contour. We also perform the studies related to the Q2 evolution of the struc-

ture functions which can be done in terms of the average over the contour of the stationary

phase. The dependence of the efficient integration contour on the momentum transfer squared

Q2 is discussed.
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2 Asymptotic contour of the stationary phase: the toy example and
the structure function

In order to clarify the reason of high efficiency of a new approximation for the contour of the

stationary phase, we discuss an exactly solvable example of the integration over the stationary

phase contour, having a form close to that which occurs in the QCD analysis of DIS data.

The general expression for the inverse Mellin transform is written as a contour integral in

the complex z-plane as

F(s) =
1

2πi

∫
C

dz s−zF̃(z) , (1)

where the contour C usually runs parallel to the imaginary axis to the right of the rightmost

pole. (For brevity, we omit the Q2 dependence.) The function F̃(z) on the right-hand side of

expression (1) is the moments of the structure function usually expressed in terms of the ratio

of Γ-functions. Therefore, the integral (1) is a one-dimensional MB integral.

Let us consider the simplest function

F(s) = sa , s ∈ [0, 1] . (2)

Mellin’s moments for this function are written as

M(z) =

1∫
0

ds sz−1F(s) =
1

z + a
=

Γ(a + z)

Γ(a + 1 + z)
. (3)

Using the inverse Mellin transform (1), we obtain

F(s) =
1

2πi

δ+i∞∫
δ−i∞

dz
euz

z + a
, u ≡ − ln(s) , (4)

where the real constant δ lies to the right of all singular points δ > −a.

We denote the integrand function in expression (4) as Φ(z) and consider the integration

contour in the form of z(y) = x(y) + iy. Next, selecting the imaginary part of the Φ-function

and imposing the condition on the contour Im [Φ(z)] = 0, we find the equation for the contour

of the stationary phase Cst as

[
x(y) + a

]
sin(uy) − y cos(uy) = 0 . (5)

The solution of this equation, which provides continuity of the integration contour at the point

y = 0, has the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xst(y) = −a + yctg(uy) , y � 0 , (6)

lim
y→0

xst(y) = −a +
1

u
≡ c0 , y = 0 , (7)

where c0 denotes the saddle point determined by the condition Φ
′
z(c0) = 0. Turning to this

expression, one has for the y(x)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y(x) =

Wct(ux)

u
, (8)

Wct(ux)|x→−∞ → ±π
[
1 +

1

ux
+

1

(ux)2
+ O

(
1

(ux)3

)]
, (9)
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Figure 1. The shape of efficient contours for the

MB integral (4). The solid and dashed curves

indicate the exact contour of the stationary

phase and unshifted asymptotic contour,

respectively. Horizontal lines show the

asymptotics (10). The asymptotic contour after

the offset to the saddle point c0 (the shift is

indicated by the arrow) coincides with the exact

contour of the stationary phase for this example

where the generalization of the Lambert function Wct
1 satisfies the transcendental equation

Wct(x)ctg[Wct(x)] = x. From (9), we find that the asymptotics of the contour Cst is bounded

and parallel to the real x-axis

yas = ±π
u
. (10)

The expression (6) for the exact contour can be represented as

xst(y) = −a + xas(y) , (11)

where

xas(y) = y ctg (uy) , Re(z) → −∞ . (12)

It is clear that if the asymptotic contour, which at y = 0 equals to cas, is shifted parallel to

the real x-axis to the saddle point c0, then this shifted asymptotic contour in accuracy will

coincide with the contour of the stationary phase (see Fig. 1). The final expression for the

asymptotic contour Cas after the shift in the complex z-plane has the form

zas(y) = xas(y) + c0 − cas + iy . (13)

It is important to note that the shift according to (13) of the asymptotic integration contour

to the saddle point does not change the first two terms in the expansion (9) and ensures the

fast convergence if we use the quadrature formula.

To calculate the integral (4) numerically, we apply the Gauss–Legendre quadrature for-

mula (see [3] for details). It is important that the exact contour of the stationary phase Cst,

as well as the asymptotic contour Cas have a limited asymptotic behavior as Re(z) → −∞.

Using the contour Cas defined by expression (13), we can represent the integral (4) as

I(s) =

|yas |∫
0

dyH(y) , (14)

where the function H(y) is given by

H(y) = Re

[(
1 − i

d xas(y)

dy

)
Φ(zas(y))

]
/π , (15)

and, finally, we have
|yas |∫
0

dyH(y) � |yas|
2

N∑
j=1

w jH(y j) , (16)

1The generalization of the Lambert function Wt given by Wt(x)tg[Wt(x)] = x was considered in [5].
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where y j =
|yas|

2
(x j + 1), x j are the roots of the Legendre polynomials Pn(x) with normaliza-

tion Pn(1) = 1, and weight coefficients w j =
2

(1 − x2
j )[P

′
n(x j)]2

.

The asymptotics of the contour of the stationary phase determined by expression (12) can

be found without solving the equation (5), but only considering the asymptotics of the inte-

grand in expression (4) at large-z. The corresponding expression has the form: Φ(z) ∼ euz

z
.

Calculating the argument of the Φ-function and equating its imaginary part to zero for

x → −∞, we arrive at the equation uy − arg(z) = 0 from which we get the exact expres-

sion (12).

Let us apply the described method of constructing the asymptotic contour of the stationary

phase to calculate the structure function in the Bjorken variable space using the inverse Mellin

transform (1). The typical parametrization of the structure function in the xB-space (see, for

example, [6]) reads for the F3 structure function as: xBF3(xB,Q2
0) = A xαB (1 − xB)β (1 + γ xB).

We can derive the Mellin moments of this structure function

M3(z) =

1∫
0

dxB xz−1
B xBF3(xB) = A

[
Γ(β + 1)Γ(α + z)

Γ(α + β + 1 + z)
+ γ

Γ(β + 1)Γ(α + 1 + z)

Γ(α + β + 2 + z)

]
(17)

and represent the structure function as the integral in the complex z-plane

xBF3(xB) =
1

2πi

∫
C

dz ΦDIS(z) , ΦDIS(z) = euBzM3(z), uB = − ln(xB). (18)

The asymptotic behavior of the integrand ΦDIS(z) at large-z has the form

ΦDIS(z) ∼ euBzA Γ(β + 1)
1 + γ

zβ+1
. (19)

Based on this expression and following our method of building the asymptotic contour of the

stationary phase Cas, we find that after shifting to the saddle point c0 this contour is expressed

as

zDISas = y ctg

(
uBy
β + 1

)
+ c0 − β + 1

uB
+ iy (20)

and it has the asymptotics parallel to the real axis

yDISas = ±π(β + 1)

uB
. (21)

It should be noted that at β = 0 this expression reproduces the discussed above limit for the

toy example, see expression (10).

3 Lefschetz thimble and Q2 evolution of the structure function

Applying the Picard-Lefschetz theory, the inverse Mellin transform (18) for the structure

function can be written in the terms of averages of the evolution factor on the Lefschetz

thimble (LT) [7–12].

xBF3(xB,Q2) = Z0〈EQCD(z,Q2)〉 =
∫
J(Q2

0
)

dzEQCD(z,Q2) e−S (z) , (22)
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Table 1. The relative accuracy ε(N) of numerical evaluation of the MB integral (18) for different

values of terms N in the sum (16)

xB = 0.01 xB = 0.5

N Cas(Q2
0) Cas(Q2) Cas(Q2

0) Cas(Q2)

10 1.3 × 10−4 3.4 × 10−5 3.9 × 10−6 1.53 × 10−6

12 4.1 × 10−5 3.8 × 10−6 1.4 × 10−7 2.46 × 10−8

16 1.3 × 10−6 4.2 × 10−8 2.9 × 10−10 2.4 × 10−12

20 3.9 × 10−8 2.3 × 10−9 2.2 × 10−13 3.2 × 10−15

〈EQCD(z,Q2)〉 = 1

Z0

∫
J(Q2

0
)

dzEQCD(z,Q2) e−S (z), S (z) = −ln(Φ(z,Q2
0)) , (23)

with the partition function

xBF3(xB,Q2
0) = Z0 =

∫
J(Q2

0
)

dz e−S (z) . (24)

The perturbative Q2-evolution of the Mellin moments is well known (see, e.g., [13]), and

in the non-singlet case in the leading order (LO) is given by the formula

M3(z,Q2) = M3(z,Q2
0)EQCD(z,Q2),

with the evolution factor

EQCD(z,Q2) = exp

⎡⎢⎢⎢⎢⎣γns(z)

2β0

ln

⎡⎢⎢⎢⎢⎣ α
LO
s (Q2

0)

αLO
s (Q2)

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦ . (25)

The stable LT J(Q2
0) is given by the path determined by

ż = −∂zS (z), ∂zS (z)
∣∣∣
z=z0

= 0, (26)

ending at the critical point, z0 ∈ J(Q2
0) as the fiducial time t → ∞.

The selection of the integration contour J(Q2
0) in expressions (22) – (24) at the point

Q2 = Q2
0 makes it universal and independent of Q2. How does this influence the efficiency

of calculating the structure function? The solution of the differential equation for the sta-

tionary phase contour and its subsequent application to calculate the MB integral requires

big computing expenses (see, e.g., [2]). Instead of the above, it is proposed to build such

approximations of the stationary phase contour that allow one to use efficient application of

the quadrature integration formulae. Examples of these approximations were given in Refs.

[1–4].

Returning to the discussion of Q2-evolution, we consider the relative accuracy which is

defined as usual ε(N) = |[ fN − xBF3(xB,Q2)]/[xBF3(xB,Q2)]| , where fN is the sum given by

Eq. (16), when the contour Cas (20) is used. The relative accuracy ε(N) of calculating the

xBF3(xB,Q2) depending on the number of terms N in the sums (16) is presented in Tab. 1.

The result is given for xB = 0.01 and xB = 0.5.

Using the contour Cas(Q2) as the LT J(Q2) approximation gives a more accurate result

than using the contour Cas(Q2
0) as theJ(Q2

0) approximation. It is demonstrated in Tab. 1. This

advantage is compensated by using the contour Cas(Q2
0) if we increase the number of terms

in the quadrature formula only by 2–4 units. This is also valid for the contour approximation

of the stationary phase as the parabolic contour as it was shown in [4, 14, 15].
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4 Summary

We formulated a recipe for building the efficient contour which, on the one hand, has the

correct behavior for Re(z) → −∞ and provides the high accuracy with growing the number

terms N in the quadrature formula (16), and on the other hand, this contour starts from the

saddle point and provides the high accuracy for small N.

We have presented the inverse Mellin transformation method to evaluate xB and Q2 depen-

dences of the structure function xBF3(xB,Q2) using the integration on the asymptotic contour

of the stationary phase shifted to the saddle point, Cas.

When the Q2-evolution of the structure function F3 is taken into account, the efficiency

of the contours Cas(Q2
0) and Cas(Q2) was compared. Although the contour Cas(Q2) gives

a more accurate result, but this advantage is compensated by using the contour Cas(Q2
0) if

we increase the number of terms in the quadrature formula only by 2–4 units. The contour

Cas(Q2
0) can be considered as the universal one that is applicable for other values of Q2. We

thereby have confirmed the assumption made by Kosover for a parabolic effective contour in

Ref. [4] about the universal character contour constructed with Q2 = Q2
0.

It is important to note that the computer time required to calculate the integral (18) using

the quadrature formula (16) and the contour Cas is significantly less than when using linear

contours, which are as a rule parallel to the imaginary axis, to the right of the right pole in the

integrand, or direct line at an angle.

The Q2 evolution of the structure function F3 has been represented as an integral over the

contour of the stationary phase, which in the Picard-Lefschetz theory is called the Lefschetz

thimble. This representation can be generalized to the singlet case and to the higher orders of

the perturbation theory.
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