MATEMATUKA

А. В. ПОГОРЕЛОВ

О ВЫПУКЛЫХ ПОВЕРХНОСТЯХ С РЕГУЛЯРНОЙ МЕТРИКОЙ

(Представлено академиком И. М. Виноградовым 21 VI 1949)

Поверхность F мы будем называть регулярной (аналитической), если в окрестности каждой ее точки можно ввести координаты u, v так, что радиус вектор точки поверхности как функция этих координат является регулярной (аналитической) функцией. Мы будем говорить, что поверхность F имеет регулярную (аналитическую) метрику, если в окрестности каждой точки на поверхности можно ввести координаты так, что коэффициенты квадратичной формы

$$ds^2 = E du^2 + 2F du dv + G dv^2$$

линейного элемента поверхности — суть регулярные (аналитические) функции координат u, v.

Если поверхность F регулярна (k раз дифференцируема), то она, очевидно, имеет регулярную (по крайней мере k-1 раз дифферен-

цируемую) метрику.

Допустим теперь, что метрика поверхности регулярна. Что можно сказать о регулярности? К решению этого вопроса сводятся многие важные проблемы теории поверхностей, например, проблема изгибания.

Пусть F — выпуклая аналитическая поверхность с положительной кривизной и ограничивающая эту поверхность кривая γ имеет неотрицательную геодезическую кривизну. Вопрос об изгибании поверхности F в классе выпуклых поверхностей решается тривиальным образом с помощью теоремы о "склеивании" А. Д. Александрова. В самом деле, возьмем какую-нибудь выпуклую плоскую область G, ограниченную кривой такой же длины, как и γ . Для поверхностей F и G выполнены условия теоремы о "склеивании" и, следовательно, существует замкнутая выпуклая поверхность F, состоящая из двух частей, одна из которых изометрична F, а другая G. Отсюда следует, что в классе выпуклых поверхностей поверхность F допускает изгибание с большой степенью произвола.

K сожалению, метод А. Д. Александрова не дает возможности сделать какие-либо заключения о регулярности той части поверхности \overline{F} , которая изометрична F, кроме гладкости. Эти заключения можно

сделать, благодаря следующей теореме.

Теорема 1. Если выпуклая поверхность имеет регулярную метрику и положительную гауссову кривизну, то она регулярна. Более точно, если метрика поверхности к раз дифференцируема

 $(k \geqslant 5)$, то поверхность по крайней мере k-2 раза дифференцируема. Если метрика выпуклой поверхности с положительной кривизной аналитическая, то поверхность аналитическая.

Простым следствием теоремы 1 являются:

Теорема 2. Если выпуклая поверхность F k раз дифференцируема ($k \geqslant 5$) и имеет положительную кривизну, то каждая выпуклая поверхность, изометричная ей, по крайней мере k-3 раза дифференцируема. Если же поверхность F аналитическая, то любая изометричная ей выпуклая поверхность аналитическая.

Теорема 3. Если в области G плоскости и, v задана регулярная метрика положительной кривизны квадратичной формой

$$ds^2 = E du^2 + 2F du dv + G dv^2,$$

то каждая точка (u_0, v_0) области G имеет окрестность, в которой заданную метрику можно реализовать некоторой регулярной выпуклой поверхностью. Именно, если коэффициенты E, F, G k раз дифференцируемы $(k \gg 5)$, то радиус-вектор поверхности диф-

ференцируем по крайней мере к — 2 раза.

Теорема 4. Если F_1 и F_2 —две изометричные выпуклые поверхности с регулярной, k раз дифференцируемой метрикой ($k \geqslant 5$) и положительной кривизной, O_1 и O_2 —две соответствующие по изометрии точки этих поверхностей, то каждую достаточно малую окрестность ω_1 точки O_1 на поверхности F_1 можно непрерывно изогнуть в соответствующую по изометрии окрестность ω_2 точки O_2 , причем во все время изгибания поверхность ω_1 будет по крайней мере k-2 раза дифференцируемой поверхностью. В частности, если поверхность F_1 аналитическая, то изгибание будет аналитическим.

Благодаря теореме 1 метод "склеивания" А. Д. Александрова в применении к поверхностям с регулярной метрикой является методом классической дифференциальной геометрии и позволяет решать достаточно просто многие ее задачи, в частности, задачу изгибания, как показано выше.

Доказательство теоремы 1 существенно опирается на следующие два предложения, представляющие и самостоятельный интерес.

Tеорема 5. Пусть F — выпуклая регулярная шапочка (так называют выпуклую поверхность с плоским краем, однозначно проектирующуюся на плоскость края). Пусть ее метрика задается квадратичной формой

$$ds^2 = E du^2 + 2F du dv + G dv^2;$$

r(u, v) — радиус-вектор точки с координатами u, v.

Тогда может быть указан верхний предел модулей вторых производных вектор-функции r(u,v) в зависимости только от верхней грани модулей производных функций E, F, G на F до четвертого порядка, максимума функций $\frac{1}{K(u,v)}$, где K(u,v)— гауссова кривизна поверхности, и расстояния точки, в которой оцениваются вторые производные функции r(u,v), от плоскости края шапочки F.

Эта теорема доказывается путем исследования уравнения Монжа — Ампера эллиптического типа, которому удовлетворяют компоненты вектора r(u,v) как функции u,v.

Теорема 6. Пусть F(r,s,t,p,q,z,x,y)=0— регулярное уравнение в частных производных эллиптического типа, т. е. F— регулярная функция своих аргументов; z=f(x,y)— регулярное решение этого уравнения в области G. Тогда для производных k-го порядка функции f(x,y) ($k \geqslant 3$) в любой точке (x_0,y_0) области G может быть указан верхний предел их модуля, в зависимости только от верхней грани модулей производных функции f(x,y) до второго порядка включительно в области G, верхней грани модулей производных до k-го порядка функции F по ее аргументам, если вместо этих аргументов после вычисления производных подставить: $r=\frac{\partial^2 f}{\partial x^2}$, $s=\frac{\partial^2 f}{\partial x\,\partial y}$, ..., $q=\frac{\partial f}{\partial y}$, z=f(x,y), верхней грани величины $1\left/\left(4\frac{\partial F}{\partial r}\frac{\partial F}{\partial t}-\left(\frac{\partial F}{\partial s}\right)^2\right)$ и расстояния точки (x_0,y_0) от границы области G.

При доказательстве этой теоремы применяется некоторая модифи-

кация метода вспомогательных функций С. Н. Бернштейна.

Идея доказательства теоремы 1 в общих чертах состоит в следующем. Пусть F — выпуклая поверхность, метрика которой, например, аналитическая, а кривизна везде больше нуля. Докажем аналитичность поверхности F в окрестности произвольной ее точки O. Для этого сместим касательную плоскость к поверхности F в точке O в сторону поверхности на малое расстояние h. При этом она отсекает от поверхности F малую шапочку ω . Введем на поверхности F в окрестности точки O аналитическую координатную сеть u, v так, чтобы она покрывала область ω .

Кривая γ , ограничивающая область ω , выпуклая. Построим близкую γ аналитическую кривую γ с положительной всюду геодезической кривизной. Пусть ω — ограничиваемая ею область на поверхности.

После этого на единичной сфере мы задаем аналитическую

метрику M_n так, что выполняются следующие условия:

1) Существует гомеоморфизм области ω на некоторую область σ_n единичной сферы. Если в области σ_n ввести координаты u, v, беря в качестве координат произвольной точки X координаты u, v соответствующей точки на ω , то линейный элемент ds_n^2 метрики M_n имеет вид

$$ds_n^2 = E_n du^2 + 2F_n du dv + G_n dv^2,$$

причем E_n , F_n , G_n в каждой области ω , содержащейся вместе с границей в области ω , сходятся равномерно к E, F, G вместе с их производными до шестого порядка (E, F, G— коэффициенты квадратич-

ной формы ds^2 — линейного элемента поверхности F).

2) Область ω_n , соответствующая σ_n , на аналитической замкнутой выпуклой поверхности F_n , реализующей метрику M_n , при неограниченном возрастании n и приближении кривой γ к γ сходится к выпуклой шапочке, а остальная часть поверхности F_n сходится к бесконечному полуцилиндру с образующими, перпендикулярными плоскости края шапочки.

В силу доказанной нами ранее теоремы об однозначной определенности шапочек можно считать, что аналитические поверхности ω_n

СХОДЯТСЯ К ω.

Пусть теперь r(u,v) и $r_n(u,v)$ — радиусы-векторы точек поверхностей ω и ω_n с одинаковыми координатами. Тогда при $n \to \infty$ $r_n(u,v) \to r(u,v)$ в силу сходимости поверхностей ω_n к ω и сходимости метрик этих поверхностей к метрике ω . Далее, с помощью теорем 5 и 6 легко дать оценки модулей производных $r_n(u,v)$ в области ω

переменных u, v, которая вместе с границей расположена на шапочке ω , не зависящие от n. Но тогда, очевидно, функция r(u, v), как предел функции $r_n(u, v)$, по крайней мере трижды непрерывно дифференцируема.

После этого из теоремы С. Н. Бернштейна об аналитичности решений аналитических уравнений эллиптического типа заключаем, что

поверхность F аналитическая.

Поступило 19 V 1949