ГИДРОМЕХАНИКА

К. К. ШАЛЬНЕВ

О ГИДРОМЕХАНИЧЕСКОМ ДАВЛЕНИИ НА ВРАЩАЮЩЕЙСЯ ЛОПАСТИ В СВЯЗИ С РАСЧЕТОМ КАВИТАЦИИ

(Представлено академиком Л. С. Лейбензоном 23 V 1949)

Критическое значение коэффициента кавитации турбины или насоса пропеллерного типа $\sigma = (H_a - H_c - H_n) / H$ связано с критическим значением коэффициента кавитации профиля лопасти этих гидромашин $\lambda_{np} = (p_1 - p_n) / q_1$ формулой

$$\sigma = c_1^2 / 2gH + \psi + \lambda_{np} w_1^2 / 2gH.$$
⁽¹⁾

Можно показать, что связь σ с критическим значением коэффициента щелевой (¹) кавитации $\lambda_{\mu} = (p_{H, s} - p_{\Pi}) / q_{\mu}$ будет выражена в виде:

$$\sigma = c_1^2 / 2gH + \psi + [\lambda_{\mu}\varphi^2(\overline{p}_{\mu, s} - \overline{p}_{s, \mu}) - p_{s, \mu}] w_1^2 / 2gH.$$
(2)

В формулах (1) и (2) обозначено: $\psi = -\eta_{z} - \rho_{\delta m}$ для турбины; $\psi = \rho_{\delta m}$ для насосов; $p_{H, \delta} = (p_{H, \delta} - p_{1}) / q_{1}$; $q_{1, \mu} = \rho w_{1, \mu}^{2} / 2$; η_{z} — гидравлический кпд; H — напор; H_{a} — атмосферное давление; H_{Π}, p_{Π} — давление паров воды; $\rho_{\delta m}$ — потеря напора во всасывающей трубе; c_{1} и w_{1} — абсолютная и относительная скорости при входе в рабочее колесо; w_{μ} — относительная скорость в щели; $p_{H, \delta}$ — давление на нижней, верхней поверхности профиля лопасти; φ — коэффициент скорости истечения из щели; g — ускорение силы тяжести; ρ — плотность жидкости.

Для подсчета коэффициента кавитации по формуле (1) рекомендуется (²) пользоваться $\lambda_{np} = -p_{MRH}$, получаемыми из продувок неподвижного крыла в плоской решетке. При этом, очевидно, предполагается, что распределение давления на профиле вращающейся лопасти тождественно распределению давления на профиле неподвижного крыла при одних и тех же параметрах профиля и решетки, т. е. пренебре гается влиянием на распределение давления на лопасти кориолисовой и центробежных сил инерции. А. Граврогкас (³) учитывает влияние кориолисовой силы инерции и центробежной силы инерции от переносного ускорения по средней скорости w_1 .

Определим степень влияния кориолисовой и центробежных сил инерции на гидромеханическое давление в любой точке профиля лопасти и на результаты расчета опасности кавитации гидромащин пропеллерного типа. Возьмем элементарную струйку относительного течения через колесо между двумя цилиндрическими соосными колесу поверхностями, расположенными на расстоянии *dR* друг от друга. Высота струйки *dr*, расстояние центра тяжести ее нормального сечения от оси колеса равно *R*. Кривизна струйки обусловлена кривизной обтекаемой ею поверхности лопасти и тем, что частицы жидкости движутся по цилиндрическим винтовым линиям. Радиус кривизны оси струйки в плоскости развертки цилиндрической поверхности будет r. Радиус кривизны оси струйки, как цилиндрической винтовой линии, найдем в предположении, что на протяжении длины струйки dl винтовая линия имеет постоянный угол подъема β , равный для струйки, пограничной поверхности лопасти, углу между касательной к элементу длины профиля и направлением окружной скорости колеса. При указанных условиях радиус кривизны оси струйки $R' = R\cos^2\beta$. Объем струйки при длине ее dl = w dt, где w — средняя скорость в сечении струйки и dt — элемент времени, равен dV = dR dr dl и масса струйки равна $dm = \rho dR dr dl$.

Силы, действующие на струйку, как на элементарный параллелепипед, будут (4): 1) вес струйки G = dm g; 2) сила инерции от тангенциального ускорения $Q_1 = -dm dw/dt$; 3) сила инерции от нормального ускорения в направлении нормали к поверхности лопасти $Q_2 = -dm w^2/r$; 4) сила инерции от нормального ускорения по нормали к винтовой линии $Q_3 = -dm w^2 \cos^2 \beta/R$; 5) сила инерции от переносного ускорения $Q_4 = -dm w^2 R$, где ω — угловая скорость колеса; 6) сила инерции от поворотного ускорения, кориолисова сила инерции, $Q_5 = -dm 2\omega w \cos \beta$; 7) разность гидромеханических давлений на грани струйки, нормальные продольной оси струйки, от силы Q_1 , или $P_1 = -dp' dR dr$; 8) разность гидромеханических давлений на грани струйки между цилиндрическими поверхностями от действия силы Q_2 , или $P_2 = dp'' dR dl$; 9) разность гидромеханических давлений на цилиндрические грани струйки от действия силы Q_3 , или $P_3 = dp''' dr dl$, от действия силы Q_4 , или $P_4 = dp^{IV} dr dl$, и от действия силы Q_5 , или $P_5 = dp^{\nabla} dr dl$; 10) сопротивление трения, принимаемое равным нулю.

По условию равновесия сумма проекций сил на продольную ось струйки

$$G\cos\beta + Q_1 + P_1 = 0. \tag{3}$$

Между тем, сумма проекций сил на плоскость, нормальную продольной оси струйки, равна

$$Q_2 + P_2 = 0,$$
 (4)

$$Q_3 + Q_4 - Q_5 + P_3 + P_4 - P_5 = 0, (5)$$

так как эти силы расположены в плоскости нормального сечения струйки и силы Q_4 и Q_5 направлены в противоположные стороны. После подстановки развернутых выражений для сил Q и давлений P в формулы (3)—(5) (пренебрегая при этом весом струйки G) и сокращений получаем:

$$dp' = -\rho w \, dw, \tag{6}$$

$$dp'' = \rho w^2 dr / r, \tag{7}$$

$$dp''' + dp^{V} - dp^{V} = \rho w^2 \cos^2 \beta \ dR/R + \rho \omega^2 R \, dR - \rho 2 \omega w \cos \beta \, dR.$$
(8)

Интегрирование (6) от точки M_1 перед колесом до точки M вблизи поверхности лопасти дает уравнение энергии, из которого находим давление на профиле лопасти в виде коэффициента давления $\bar{p}' = (p' - p_1) / q_1 = 1 - w^2 / w_1^2$, тождественное таковому для профиля неподвижного крыла.

Результат интегрирования (7), записанный в виде
$$p_2'' - p_1' = \int_{0}^{r_1} e^{r_2} dr dr$$

$$= \rho \int w^2 dr / r$$
, показывает, что изменение давления в струйке

вследствие кривизны поверхности профиля лопасти, так же как и изменение давления от изменения скорости вдоль струйки, тождественны с таковыми для профиля неподвижного крыла.

440

В дальнейших выводах формул будем пользоваться следующими условиями, вытекающими из практических данных о конструкции и работе некоторых турбин и насосов: 1) профили лопасти вблизи ее торца представляют профили тонкой, слабо изогнутой пластинки; 2) скорость с₁ параллельна оси колеса; 3) угол установки профиля лопасти (угол между хордой профиля и окружной скоростью колеса) равен углу подъема винтовой линии — оси струйки, пограничной с поверхностью лопасти; 4) зависимость w cos β от радиуса R выражается в виде $w\cos\beta = v\omega (R - R_a)$ или в виде $w\cos\beta = x\omega R$, где v и x - постоянные, $R_1 > R_a > 0$, $R_1 - радиус$ внешней окружности колеса.

Рис 1. $\overline{p} - \overline{p'} = f(\overline{p'})$, где $\overline{p'} = 0 \div 1,0$ в $\overline{p'} = 0 \div -3,0$

На основании этих условий полное гидромеханическое давление в струйке, пограничной с поверхностью лопасти, будет p = p' + p''' + p''' $+p^{1V}-p^{V}$, где сумма $p'''+p^{1V}-p^{V}$ найдется интегрированием (8):

$$p^{\prime\prime\prime} + p^{1V} - p^{V} = \left[v^{2} \left(1 - 4 \frac{R_{a}}{R} + 2 \frac{R_{a}^{2}}{R^{2}} \ln R \right) - 2v \left(1 - 2 \frac{R_{a}}{R} \right) + 1 \right] \rho u^{2} / 2 + \left[v^{2} \left(3 - 2 \ln R_{a} \right) - 2v \right] \rho u_{a}^{2} / 2,$$

так как постоянные интегрирования с3 и с5 определятся из условия, что при $R = R_a$ имеет место $Q_{3,5} = P_{3,5} = 0$, а $c_4 = 0$ из условия, что при R = 0 имеет место $Q_4 = P_4 = 0$. При этом $u = \omega R$. Полное давление в струйке или на поверхности лопасти выразим

в виде коэффициента давления:

$$\overline{p} = \overline{p'} + \left[\nu^2 \left(1 - 4\frac{R_a}{R} + 2\frac{R_a^2}{R^2}\ln R\right) - 2\nu \left(1 - 2\frac{R_a}{R}\right) + 1\right] u^2 / w_1^2 + \left[\nu^2 \left(3 - 2\ln R_a\right) - 2\nu\right] u_a^2 / w_1^2.$$
(9)

При втором варианте зависимости $w\cos\beta = \varkappa\omega R$ полное давление на лопасти

$$\bar{p} = \bar{p}' + (1 - \varkappa)^2 \ u^2 / w_1^2, \tag{10}$$

так как в этом случае постоянные интегрирования, определенные из условия, что при R = 0 имеет место $Q_{3-5} = P_{3-5} = 0$, равны $c_{3-5} = 0$.

В особой точке профиля лопасти давление при всех вариантах $w\cos\beta = f(R)$ будет $p = 1 + u^2 / w_1^2$.

Степень влияния сил Q_{3-5} на давление на лопасти тогда можно будет оценить с помощью p-p'. Приведем типичные результаты вычисления $\overline{p}-\overline{p}'=f\left(\overline{p}'
ight)$ для насоса по формуле (9) (рис. 1, кривая 1), по формуле (10) (рис. 1, кривая 2) и вычисления σ/σ_k по формулам (1), (2), где σ —без учета сил Q_{3-5} и σ_k —с их учетом (см. табл. 1). На том же рисунке кружком нанесено опытное 3 ДАН, т. 67, № 3 441

значение p - p' в особой точке торцевого профиля лопасти насоса, полученное методом осциллографирования давления на стенках камеры рабочего колеса насоса.

Таблица 1

По формуле			(1)			(2)	
p'	0,5	-1,0	-1,5	2,0	-3,0	1,0	
o/ok	1,10	1,17	1,24	1,32	1,44	0,73	

Качественная оценка опытов М. А. Каспарова (⁵) показывает, что при сравнении результатов опытов с теорией следует учитывать замедление скорости в областях отжима струек от поверхности лопасти по сравнению с той, которая получается вычислением по измеренному p'.

Выводы

1. В противоположность распространенному мнению (², ⁵), из вышеизложенного следует, что распределение давления вдоль профиля вращающейся лопасти не тождественно распределению давления вдоль профиля неподвижного крыла вследствие влияния сил Q_{3-5} и степень их влияния неодинакова для различных точек лопасти. Если пренебрежение силами Q_{3-5} при расчете σ по (1) при малых отрицательных p' допустимо, то при больших отрицательных p' такое пренебрежение приводит к повышемному значению σ .

2. Влияние сил Q_{3-5} на давление в особой точке профиля лопасти сводится к действию только силы Q_4 и сказывается всегда в значительном увеличении \bar{p}' . Пренебрежение силой Q_4 приводит при расчетах σ по (2) к недооценке опасности щелевой кавитации.

3. Степень влияния сил Q_{3-5} может зависеть для некоторых гидромашин от их размеров, вследствие чего развитие кавитации в гидромашине и в геометрически ей подобной модели должно происходить неодинаково; это различие в развитии кавитации особенно заметно проявится при больших отрицательных p'.

> Поступило 28 II 1949

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. В. Малышев, Свирьстрой, в. 11 (1937). ² А. Тепоt, Phénomènes de la Cavitation, Paris, 1934. ³ А. Граврогкас, Аналитический метод расчета реактивных водяных турбин, Каунас, 1945. ⁴ Н. Е. Жуковский, Аналитическая механика, 1939. ⁵ М. А. Каспаров, Котлотурбиностроение, № 6 (1948).