м. м. постников

КЛАССИФИКАЦИЯ НЕПРЕРЫВНЫХ ОТОБРАЖЕНИЙ ПРОИЗВОЛЬНОГО п-МЕРНОГО ПОЛИЭДРА В СВЯЗНОЕ ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО, АСФЕРИЧНОЕ В РАЗМЕРНОСТЯХ, БОЛЬШИХ ЕДИНИЦЫ И МЕНЬШИХ п

(Представлено академиком И.Г. Петровским 19 V 1949)

До сего времени классификация отображений в неодносвязные пространства почти не привлекала внимания исследователей. Не считая немногочисленных работ, посвященных отображениям в пространства специального вида (проективные пространства, например, (4), пространства линзы (5), асферические пространства (1) и т. п.), этот вопрос изучался лишь Роббинсом (1), получившим классификацию непрерывных отображений двухмерного полиэдра в произвольное пространство. В настоящей заметке решена простейшая задача этого типа, сформулированная в заголовке. Насколько мне известно, все ранее полученные теоремы о классификации отображений в неодносвязные пространства следуют из результатов этой заметки. Я буду пользоваться определениями, обозначениями и результатами моей заметки (2).

А. Этот пункт посвящен необходимым для дальнейшего определениям

теории гомологии абстрактных групп (3).

Для некоторой мультипликативной, вообще говоря неабелевой, группы A и аддитивной абелевой группы G с A, как группой (левых) операторов, определим группу $L^q(A,G)$ q-мерных цепей группы A над группой G как аддитивную группу всех функций от q переменных из A со значениями в G. ∇ -границу ∇f^q q-мерной цепи f^q определим формулой:

$$\nabla f^q\left(\alpha_1,\ldots,\alpha_{q+1}\right) = \alpha_1 f^q\left(\alpha_2,\ldots,\alpha_{q+1}\right) + \sum_{l=1}^q (-1)^l f^q\left(\alpha_1,\ldots,\alpha_l\alpha_{l+1},\ldots,\alpha_{q+1}\right) + (-1)^{q+1} f^q\left(\alpha_1,\ldots,\alpha_q\right).$$

Оказывается, что $\nabla \nabla f^q = 0$ для любой цепи f^q . Если $\nabla f^q = 0$, то цепь f^q назовем циклом. q-мерные циклы образуют подгруппу $Z^q(A,G)$ группы $L^q(A,G)$. q-мерные цепи вида ∇f^{q-1} назовем гомологичными нулю, они образуют подгруппу $H^q(A,G)$ группы $Z^q(A,G)$.

гичными нулю, они образуют подгруппу $H^q(A,G)$ группы $Z^q(A,G)$. Фактор-группу $\nabla^q(A,G) = Z^q(A,G) - H^q(A,G)$ назовем q-мерной группой гомологий группы A над группой G. Ее элементы назовем классами гомологий и обозначим жирными буквами латинского алфавита.

Б. Пусть K— произвольный симплициальный комплекс с заданным порядком вершин. Любой его ориентированный симплекс имеет вид

 $\varepsilon x_0 \dots x_p$, где $\varepsilon = \pm 1$, а вершины x^0, \dots, x^p расположены в возрастающем порядке. Определяя цепи комплекса К, достаточно задавать их значения лишь для симплексов с $\varepsilon = +1$.

Симплекс вместе с некоторым порядком его вершин назовем

упорядоченным симплексом.

В. Пусть, так же как в заметке (2), Y- произвольное связное (с помощью путей) топологическое пространство с отмеченной точкой *. Для каждого элемента α группы $\pi^1(Y)$ выберем определенное представляющее его отображение р∝ числового единичного отрезка [0,1] таким образом, чтобы нулевому элементу соответствовало отображение отрезка в точку *. Для любого одномерного упорядоченного симплекса σ^1 существует единственное линейное отображение ϵ_{σ^1} этого симплекса на отрезок [0,1], переводящее первую вершину в 0, а вторую — в 1. Все отображения симплекса о¹ вида расо¹ назовем нормальными.

Нульнормальное $(^2)$ отображение комплекса K в пространство Y, нормальное на каждом одномерном симплексе из К, назовем 1-нор-

мальным.

Обозначим через T_0^2 какой-нибудь фиксированный двумерный упорядоченный симплекс. Для любого одномерного цикла $a^{\scriptscriptstyle 1}$ симплекса T_0^2 над группой $\pi_*^1(Y)$ существуют 1-нормальные отображения симплекса T_0^2 , принадлежащие a^1 в смысле пункта Ж заметки (2). Выберем среди них одно и обозначим его через $ho_{a^1}^1$. Для любого двумерного упорядоченного симплекса о² существует единственное линейное отображение ε_{σ^1} симплекса σ^2 на симплекс T_0^2 , сохраняющее порядок вер**ш**ин. Все отображения симплекса σ^2 вида $\rho_{a^1}^2 \epsilon_{\sigma^2}$ назовем нор-

1-нормальное отображение комплекса K в пространство Y, нормальное на каждом двумерном симплексе из К, назовем 2-нор-

мальным.

Обозначим через T_0^3 какой-нибудь фиксированный трехмерный упорядоченный симплекс. Если пространство У асферично в размерности 2, то для любого одномерного цикла a^1 симплекса T_0^3 существуют 2-нормальные отображения симплекса T_0^3 , принадлежащие a^1 . Выберем среди них одно и обозначим через $ho_{a^1}^3$. Для любого трехмерного упорядоченного симплекса σ^3 существует единственное линейное отображение ε_{σ^3} симплекса σ^3 на симплекс T_0^3 , сохраняющее порядок вершин. Все отображения симплекса σ^3 вида $\rho_{a^1}^2 \epsilon_{\sigma^3}$ назовем нормальными.

2-нормальное отображение комплекса K в пространство Y, нормальное на любом трехмерном симплексе из К, назовем 3-нормальным. Продолжая эту цепочку определений, мы придем к *п*-нормальному

отображению комплекса \check{K} в пространство Y, асферичное в размер-

ностях $2, 3, \ldots, n-1$.

(n-1)-нормальное отображение назовем нормальным. Очевидно, что любое нульнормальное отображение нульгомогопно нор-

мальному.

п-нормальное отображение п-мерного комплекса назовем стандартным. Очевидно, что каждому одномерному циклу п-мерного комплекса над группой $\pi^1(Y)$ принадлежит (в смысле пункта $\mathcal{K}(^2)$) одно и только одно стандартное отображение этого комплекса в пространство Y. Стандартное отображение K^n произвольного комплекса К, принадлежащее фундаментальному циклу некоторого нормального отображения комплекса К в У, называется принадлежащим этому нормальному отображению. Очевидно, что стандартное ото-428

бражение, принадлежащее данному нормальному, совпадает с ним на K^{n-1} .

Для нормального отображения f комплекса K в Y определена n-мерная цепь d_f^n , отличающая отображение f/K^n от принадлежащего ему стандартного (см. (2), пункт K). Назовем ее характеристической

цепью нормального отображения f.

Г. Рассмотрим случай, когда комплекс K является границей S некоторого (n+1)-мерного упорядоченного симплекса с вершинами $p_0 < p_1 < \ldots < p_{n+1}$. Нетрудно видеть, что любой одномерный цикл в S над группой π_*^1 (Y) определяется своими значениями α_i на ребрах $p_i \, p_{i+1}$ $(i=0,\ldots,n)$. Обратно, для любого набора элементов α_i существует одномерный цикл, принимающий на ребрах $p_i \, p_{i+1}$ значения α_i .

Поляризуем сферу S, приняв за полюс вершину p_0 , тогда стандартное отображение, принадлежащее циклу, соответствующему набору $\alpha_0, \ldots, \alpha_n$, определит некоторый элемент k ($\alpha_0, \ldots, \alpha_n$)группы π^n (Y). Определенная таким образом функция k есть (n+1)-мерная цепь группы π^1 (Y) над группой π^n (Y) (см. A) (π^1 (Y) естественным образом является группой операторов группы π^n (Y)). Эта цепь впервые была введена в (3), где доказано, что она является циклом и что класс гомологий этого цикла не зависит от произвола, имеющего место в определении стандартного отображения. Другими словами, класс гомологий k этого цикла является топологическим инвариантом вространства Y. Используя произвол, имеющий место в определении стандартного отображения, мы можем таким образом получить любой цикл класса k.

Д. С помощью цикла k мы любому одномерному циклу a^1 комплекса K над группой $\pi^1_*(Y)$ отнесем (n+1)-мерную цепь $k^{n+1}(a^1)$ того же комплекса над группой $\pi^n_*(Y)$:

$$[k^{n+1}(a^1)](x_0 \ldots x_{n+1}) = k(a^1(x_0 x_1), a^1(x_1 x_2), \ldots, a^1(x_n x_{n+1}))$$

(см. Б). Оказывается, что цепь $k^{n+1}(a^1)$ является ∇_{a^1} -циклом и что класс ∇_{a^1} -гомологий $k^{n+1}(a^1)$ этого цикла не зависит от произвола, имеющего место в определении стандартного отображения.

Если $a^1:b^1=\nabla a^0$, то $k^{n+1}(b^1)=a^0\,k^{n+1}(a^1)$ (см. (2), пункт Е). Для нормального отображения f имеет место формула:

$$\nabla_f d_f^n = -k^{n+1} (a_f^1).$$

Е. Для двух одномерных циклов a^1 и b^1 комплекса k над группой $\pi^1_*(Y)$ мы с помощью нульмерной цепи a^0 того же комплекса над той же группой определим их произведение $(a^1 \times b^1, a^0)$, являющееся n-мерной цепью комплекса k над группой $\pi^*_*(Y)$:

$$(a^{1} \times b^{1}, a^{0}) (x_{0} \dots x_{n}) =$$

$$= \sum_{j=0}^{n} (-1)^{j} k (a^{1} (x_{0} x_{1}), \dots, a^{1} (x_{j-1} x_{j}), a^{0} (x_{j}), b^{1} (x_{j} x_{j+1}), \dots, b^{1} (x_{n-1} x_{n})).$$

Ж. Теперь готовы все нужные нам понятия и операции, и мы можем перейти к формулировке результатов. В формулировках пространство Y предполагается асферичным в размерностях $2, \ldots, n-1$.

Теорема продолжения. Для того чтобы одномерный цикл a^1 (n+1)-мерного комплекса K над $\pi^1_*(Y)$ был фундаментальным циклом некоторого отображения комплекса K в Y, необходимо и достаточно, чтобы $\mathbf{k}^{n+1}(a^1) = 0$.

Из этой теоремы обычным приемом выводится

Основная теорема. Два нормальных отображения f и g n-мерного комплекса в пространство Y, фундаментальные циклы a_f^1 и a_g^1 которых гомологичны между собой, тогда и только тогда гомотопны, когда существует такая нульмерная цепь a^0 , что

1)
$$a_f^1: a_g^1 = \nabla a^0;$$

2)
$$d_f^n - a^0 d_g^n \tilde{\nabla}_f (a_f^1 \times a_g^1, a^0)$$
.

Эта теорема полностью решает проблему классификации отображений n-мерного комплекса в Y, хотя и ограничивается сравнением двух нормальных отображений с гомологичными фундаментальными пиклами.

Действительно, всякое отображение гомотопно нульнормальному и, следовательно, нормальному (см. В), а два отображения с негомологичными фундаментальными циклами заведомо негомотопны между собой.

Поступило 16 V 1949

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. Robbins, Trans. Am. Math. Soc., 49, 308 (1942). ² M. M. Постников, ДАН, 66, № 2 (1949). ³ S. Eilenberg and S. MacLane, Proc. Nat. Ac. Sci. USA, 32, No. 11, 277 (1946). ⁴ И. И. Гордон, ДАН, 65, № 4 (1949). ⁵ W. Franz. Crelle Journ., 185, No. 2, 65 (1943).